
J Intell Manuf (2015) 26:641–658
DOI 10.1007/s10845-013-0824-0

ALATO: An efficient intelligent algorithm for time optimization
in an economic grid based on adaptive stochastic Petri net

Mohammad Shojafar · Zahra Pooranian ·
Mohammad Reza Meybodi · Mukesh Singhal

Received: 20 February 2013 / Accepted: 5 August 2013 / Published online: 27 August 2013
© Springer Science+Business Media New York 2013

Abstract Cost and execution time are important issues in
economic grids, which are widely used for parallel comput-
ing. This paper proposes ALATO, an intelligent algorithm
based on learning automata and adaptive stochastic Petri
nets (ASPNs) that optimizes the execution time for tasks
in economic grids. ASPNs are based on learning automata
that predict their next state based on current information and
the previous state and use feedback from the environment to
update their state. The environmental reactions are extremely
helpful for teaching Petri nets in dynamic environments. We
use SPNP software to model ASPNs and evaluate execution
time and costs for 200 tasks with different parameters based
on World Wide Grid standard resources. ALATO performs
better than all other heuristic methods in reducing execution
time for these tasks.

Keywords Grid computing · Petri nets ·
Learning automata · Optimization · Modeling

M. Shojafar (B)
Department of Information Engineering, Electronics,
and Telecommunications (DIET), Sapienza University di Roma,
Rome, Italy
e-mail: shojafar@diet.uniroma1.it

Z. Pooranian
Department of Computer Engineering, Dezful Branch,
Islamic Azad University, Dezful, Iran

M. R. Meybodi
Computer and IT department, Amirkabir Technical University,
Tehran, Iran

M. Singhal
Electrical Engineering and Computer Science,
University of California, Merced, CA, USA

Introduction

A Stochastic Petri Net (SPN) is a tool for studying systems.
Useful information can be obtained by studying the behavior
of dynamic systems modeled by SPNs, and the data can be
evaluated to improve or change the system (Peterson 1981).
SPNs are useful for mathematical and graphical modeling
(Peterson 1981) and can be used to model, describe, and ana-
lyze the nature of concurrent, asynchronous, distributed, par-
allel, and uncertain or accidental systems (Reisig 1985; Jeng
et al. 1999). In fact, Petri nets are component models that can
concurrently show simultaneous actions and modes (Moore
and Hahn 2003). The major difference between Petri nets
and SPNs is that SPN tokens are divided into the usual indis-
cernible Petri net (where each node can handle each series of
data or tokens with various input rates internally) and one dis-
tribution of each token with a unique feature; the relationship
between general Petri nets and SPNs is similar to the relation-
ship between high-level programming languages and assem-
bly code. Finally, the graphical properties of SPNs (Hirel
et al. 2000) allow systems to be studied through a visualiza-
tion of the complexity of the simulation model. It is impor-
tant to note that SPNs can be used to analyze a wide variety
of systems, including grid computing networks (Venkatara-
mana and Ranganathan 1999; Pooranian et al. 2013a; Pla et
al. 2012).

One of the problems posed by SPNs is that they are not
adaptable. SPNs have no access to previous information
(Peterson 1981; Reisig 1985; Jeng et al. 1999; Moore and
Hahn 2003). If more than one transition is enabled at a given
time, each can be considered as the next step. This means
that several events can occur simultaneously in SPNs and
not as part of the same event. The events that occur do not
change over time (Baranauskas et al. 2006; Zimmermann et
al. 2001). This stands in contrast to the real world and its

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-013-0824-0&domain=pdf

642 J Intell Manuf (2015) 26:641–658

dynamic nature. The main goal of a simulation model is to
provide an evaluation of a system’s performance through a
simulation that is similar to the system. An SPN tool can
identify problems and weaknesses in a system but is unable
to solve problems or take actions to improve and optimize,
and so the next state cannot be predicted (Schwardy 2001).

Grid computing, which in its simplest form is carefully
distributed computing, has reached an advanced stage of evo-
lution. A grid system is a simple but large and powerful vir-
tual computer that is built from a vast number of comput-
ers and is capable of managing itself. It consists of a set of
heterogeneous systems that are interconnected by a series of
different complex combinations of shared resources. We can-
not manage such complex systems with common approaches
to resource management that try to optimize system perfor-
mance generally. Rather, an economic approach is needed
to provide a solid basis for the successful management of
heterogeneous decentralized resources. Optimized resource
allocation and scheduling is one of the vital factors in grid
production environments that increases the grid system pro-
ductivity (Arab et al. 2011). Several resource modeling have
been proposed and applied in the recent years in several works
(Pasandideh et al. 2011; Bilyk and Mönch 2010; Fleszar et
al. 2011; Guinet 1995; Radakovič et.al 2011; Aissani et al.
2011; Archimede et al. 2013). Specifically, Archimede et
al. (2013) introduces the architecture and behavior of (Dis-
tributed, Supervisor, Customer, Environment, and Producer)
(DSCEP) framework under shared resources situation with
disturbances. That uses a simple example of manufacturing
system to illustrate the ability of DSCEP framework to solve
the shared resources scheduling problem in complex systems
such as Grid.

The most common economic model is the model of a
commodity market, where resource prices are based on
demand, supply, and value in the economic system. Grid
users request a deadline (the time of program completion),
budget, and time optimization strategy as quality of service
(QOS) requirements. Economic scheduling in grid systems
should use an efficient algorithm that allocates grid resources
to user programs (which are composed of many indepen-
dent tasks) so that the deadline and the optimization strat-
egy are met in the minimum time, based on the desired
parameters.

The economic approach assumes that grid owners (vir-
tual organization that control a specific Grid) are look-
ing for economic methods to manage their resources and
schedule user requests to ensure that users receive the QOS
they have requested. Competitive economic models provide
algorithms, policies, and tools for sharing and allocating
resources in an economic grid. We have developed an arti-
ficial intelligence (AI) method to decrease execution time
when resources are allocated to independent tasks, based on
a new modeling method (the adaptive stochastic Petri net, or

ASPN). In previous work (Shojafar et.al 2011), an Adaptive
Stochastic Petri Net (ASPN) is presented to improve the time
in economical grid helping learning automata. We experi-
enced large solve time variances, undermining the feasibility
of this approach for more complex and large-scales scenar-
ios. In the current paper, we extended our workload model to
include applications that are associated with a heterogeneous
data set, which allows us to take data transmission speeds and
data locality into account during the scheduling process, and
to support the online arrival of applications.

The rest of this paper is organized as follows. Section
“Related work” describes related work, including learning
automata (LA), on which the new ASPN method is based.
Section “The system model” introduces the concept of being
adaptive and presents our new ASPN model, and Section
“Our proposed approach (ALATO)” proposes a resource allo-
cation method, called “ALATO”. Section “Simulation and
efficiency evaluation” compares the performance of ALATO
with previous methods in different scenarios and presents
the results with graphs and diagrams. Section “Conclusion”
presents our conclusions and future research directions.

Related work

Methods exist for introducing adaptive characteristics in
large Petri net models (Murata 2002; Zhou and Jeng 2002).
These methods use AI techniques such as artificial neural net-
works, fuzzy logic, knowledge-based systems, and stochastic
LAs. They attempt to develop techniques that can signifi-
cantly improve the QOS in Petri nets. This research falls into
two general categories (Zhou and Jeng 2002). Research in
the first category, fusion hybrid, uses AI to model real sys-
tem executions with the aim of defining the conditions under
which adaptive Petri nets can capture the information that is
available in real systems. These models provide a view of
the real world that can easily be analyzed, processed, and
evaluated to produce results that can be applied in the real
world. Adaptive ability is concerned with making fundamen-
tal changes in a Petri net configuration to match it to a real
system. The structures of Petri nets have been changed in
this group (first category) to make use of AI techniques that
have the ability to learn and thus increase the power of the
Petri nets. However, hybrid fusion Petri nets have some dis-
advantages. For example, the learning that takes place often
increases computational complexity and overhead, so that
a large amount of time is needed to model all the charac-
teristics of real systems. Petri nets in the second category
are combination hybrid Petri nets. A relatively small num-
ber of researchers work in this area to implement intelligent
adaptive techniques along with Petri net methodologies for
real-world problems. The combination hybrid models have
less complex designs than the hybrid fusion models and gen-

123

J Intell Manuf (2015) 26:641–658 643

erally require less execution time. Combination hybrid mod-
els combine different technologies with modifications that
enable the models to run in environments with greater effi-
ciency and accuracy than they normally would. These models
use the basic properties of Petri nets and apply AI techniques
to the internal task demands and to every part of the real
system.

A real-time mixture of intelligent features has been pro-
posed in Khosla and Dillon (2002), Jain and Martin (1998)
to improve current systems: the ASPN, a stochastic Petri net
that can predict the next state of the system based on infor-
mation about the environment achieved in the current state
of the system and gradually adjusts to environmental condi-
tions. ASPNs can be used in intelligent systems and dynamic
systems that undergo large changes. The ASPN algorithms
presented in this paper belong to the hybrid fusion category.

Several time-optimization algorithms have been proposed
for resource allocation and scheduling in economic grids.
The goal of all these algorithms is to make the best use of
the users’ budgets and possibly reduce the execution time.
The Buyya Time Optimization (BTO) algorithm presented
in Buyya (2002), Al-Ali et al. (2002) aims to optimize exe-
cution time and is evaluated in Czajkowski et al. (2002). BTO
is a heuristic algorithm that answers to a considerable extent
the call to provide independent homogeneous or accept-
ably heterogeneous tasks for the user. BTO assumes that
resources are time shared, and this assumption is responsi-
ble for some complexities and shortcomings of the algorithm.
Consequently, Mahdavifar and Meybodi (2007a, b) presented
different methods to optimize and simulate BTO, including
the Extended Buyya Time Optimization (EBTO), Advanced
Extended Buyya Time Optimization (AEBTO), and Learning
Algorithm Time Optimization (LATO) algorithms. Despite
current research efforts (Shojafar et al. 2013; Pooranian et al.
2012, 2013b, c), the cost-optimal and time-optimal resource
scheduling and allocation of external resources while tak-
ing into account the availability of a local IT infrastructure
remains an open problem.

BTO, EBTO, and AEBTO are heuristic algorithms, and
LATO is an AI algorithm based on LAs. AEBTO changes the
structure of BTO to provide better scheduling results, but all
three heuristic methods use time-shared allocation and are
not appropriate for optimizing task completion time. None
of the heuristic methods use AI algorithms, so their opti-
mizations involve several additional loops that are not essen-
tial for resource allocation. LATO uses LAs to minimize the
completion time within the budget and utilizes space-shared
allocation. Other methods for resource allocation using an
economic grid are presented in Reddy (2006), Assuncao
and Buyya (2006), Mirzaee and Rahimzadeh (2011), and
a framework for an economic grid scheduler is presented
in Al-Khasawneh and Bsoul (2010). Although this frame-
work has a good structure, it is not suitable for discrete high

performance requests. Finally, a new method based on LAs
was recently proposed in Sarhadi and Meybodi (2010), but
it focuses on optimizing the budget rather than on modeling
patterns to improve the system performance.

The system model

AI algorithms are currently applied in SPNs to decrease the
time needed for distributing tasks and to simulate real sys-
tems, modeling various features and monitoring their sta-
tus to resolve any problems that may exist. One of these
algorithms is the stochastic LA (Boppana and Halldorsson
1992; Bui and Eppley 1995), which can be considered to be
single object that executes several actions. An LA’s perfor-
mance at any time involves selecting an action from a set of
actions and evaluating the action in a random environment,
using the response from the environment to select its next
action. Hence, an LA gradually identifies optimal actions.
The method that an LA uses to select the next action is deter-
ministic. LAs can have fixed or variable structures. A variable
LA is a set consisting of quadruples{α, β, p, T}, where α is
an action, β is an input, p is a probability for the action, and
T is learning algorithm. LA algorithms can be classified as S
and P models. In a P model, or a standard model, the value of
a reward (when a desirable response is received) or penalty
(when a non-optimal or non-desirable response is received)
is constant and is the same for each action. The general form
of a standard-model LA is given by Eqs. 1 and 2. Equation 1
applies when a desirable response is received from the envi-
ronment, while Eq. 2 applies when a non-desirable response
is received. In Eq. 1, the probability of the action is increased
by the reward rate while the probabilities of all other actions
decrease. In Eq. 2, the probability of the action is decreased
by the punishment rate while the probabilities of all other
actions increase. The parameter r indicates that the system
has at most r actions and a is the reward parameter and b is
the punishment parameter.

pi(n + 1) = pi(n) + a[1 − pi(n)]
pj(n + 1) = (1 − a)pj(n); ∀j; j �= i (1)

pi(n + 1) = (1 − b)pi(n)

pj(n + 1) = b

r − 1
(1 − b)pj(n); ∀j; j �= i (2)

In an S model, the response of the environment, defined as
a function of the automaton, is added to the standard model
to improve the automaton’s learning. There are three types of
S models, based on the reward and punishment parameters a
and b: when a = b the S model is called S-L R P , when b << a
the S model is called S-L ReP , and when b = 0 the S model is
called S-L RI (Narendra and Thathachar 1989; Poznyak and
Najim 1997). In this paper, we have used all three S models of

123

644 J Intell Manuf (2015) 26:641–658

automata by the names of S-LRP, S-LRI, and S-LReP, respec-
tively. Learning automata update the probability vectors for
r actions. If action αi is selected in the nth iteration and the
environment’s response is βi (n), then the automaton’s prob-
ability vector is updated as in Eqs. (3) and (4):

pi(n + 1) = pi(n) + a(1 − βi(n))

×(1 − pi(n)) − bβi(n)pi(n) (3)

pj(n + 1) = pj(n) − a(1 − βi(n))pj(n)

+bβi(n)

[
1

r − 1
− pj(n)

]
∀j j �= i (4)

We now introduce two additional concepts that are
used in this study: time-shared resources and space-shared
resources, which play a crucial role in task scheduling in
the economic grid. A task that can be assigned to a time-
shared resource is immediately transferred to run on one of
the CPUs, because time-shared CPUs can simultaneously
execute multiple tasks. In this case, each task is allocated a
specified time interval to execute on the CPU. Then it is sus-
pended and the next task is transferred to run on the CPU.
When a task finishes, it is removed from the execution queue
for the resource, and the CPU time is divided equally among
the remaining tasks. One issue that arises with time-shared
resources is that we cannot predict the completion times for
tasks that have been assigned to them, because of the pos-
sibility of assigning new tasks to these resources. Another
problem is that scheduling several tasks may overload the
CPU. This happens when a large number of simultaneous
tasks run on a time-shared CPU, so that only a very small
percentage of CPU time is allocated to each task and there is
frequent suspension of each task’s execution to resume the
execution of another task—which incurs CPU overhead and
thereby reduces efficiency.

In contrast, with a space-shared resource, the tasks in
the queue are not processed as soon as the CPU becomes
idle. A space-shared CPU can or wants to run only one task.
This means that when a task is transferred to a space-shared
CPU for execution, it continues to execute until it completes.
Therefore, we called the CPU a non-preemptive resource
in this case. In this paper, we use space-shared resources
for independent tasks, based on AI algorithms. Space-shared
resources are divided into two scheduling classes: all-at-once
allocation and stage allocation.

In stage allocation, the scheduler schedules in stages that
continue until all of a user’s tasks have been assigned. Each
resource receives a number of tasks equal to the number of its
active processors, which prevents concurrent task execution
on one processor. A queue is also formed for each user and
unassigned user tasks are stored in the queue after the set of
independent tasks that constitute the user’s application have
been created. In the next stage, the rescheduling algorithm
executes: resources are selected for mapping and tasks that

have not run can be delegated to the available processors.
This procedure continues until all tasks have been assigned
to resources.

In all-at-once allocation, the scheduling algorithm assigns
each task once to each resource, which controls and manages
the number of tasks running on each of its processors (no
processor runs more than one task simultaneously). Because
it has task queues for each resource, the scheduling algorithm
will pass these tasks to unemployed CPUs.

The difference between the two types of scheduling is
that in stage allocation scheduling, tasks are stored in their
users’ queues and are assigned to resources simultaneously
and gradually in a series of repeated steps, while in all-at-once
allocation scheduling, all tasks are assigned to resources once
and the gradual transfer of tasks to processors is performed
for each resource (each resource has a queue of its assigned
tasks), which means that resources are treated the same as
space-shared resources.

This paper proposes grid architecture based on SPN mod-
eling in an adaptive form. The grid architecture consists of
three layers. The top layer is an application layer with a
task flow environment in which users describe their appli-
cations. The bottom layer is a fabric layer that consists of
grid nodes connected in a net. Between these two layers is a
middleware layer that is responsible for resource allocation.
Figure 1 shows the three layers of the grid net in an SPN
that is implemented in SPNP software. Each request is sent
from the application layer to the middleware layer, and after
the request is analyzed into independent tasks and subtasks,
these are sent to the fabric layer that controls hardware and
grid resources. Figure 2 shows the task allocation procedure
in the middleware layer.

In Fig. 2, 200 ordered tasks are given to the scheduler. The
scheduler considers the tasks to be the different actions of an
LA. Each request is converted to a queue of requests that are
referred to different resources.

In the middleware layer, user programs are received from
the application layer, and after dynamic information about
resources has been obtained, task scheduling requests are
given to the scheduler module. Our proposed algorithm sorts
tasks in descending order of execution time, as shown in
Fig. 3. Initially, a general model of the grid system with 200
tasks is considered. The variable genC is the loop control
variable for the loop that sorts the tasks. The terminating
condition is given in the CaseIDCounter state. In the sec-
ond loop, orders are sorted in descending order of execution
times.

Each token represents a user’s task; it includes informa-
tion such as the task length, a priority number based on the
task length, and an LA. As noted, our proposed SPN falls in
the fusion hybrid category. This category has some disadvan-
tages. Because Petri nets and AI techniques are combined,
learning in fusion hybrid Petri nets often results in compu-

123

J Intell Manuf (2015) 26:641–658 645

Fig. 1 The three layers of the
grid system

Fig. 2 Task allocation in the
middleware layer

tational complexity and overload. In the ASPNs in this cate-
gory, AI techniques such as artificial neural nets, fuzzy logic,
and knowledge-based systems are used.

However, the ASPN that we propose is based on LAs.
Unlike ASPNs that use artificial neural nets, ASPNs based
on LAs do not need to be trained with a series of preexisting

patterns. Therefore, our proposed ASPN is quite flexible for
systems with continually changing and relatively unknown
environments, where there are no preexisting patterns for
training artificial neural nets. Hence, our proposed ASPN
does not share the problem of computational complexity and
overload that other fusion hybrid SPNs have.

123

646 J Intell Manuf (2015) 26:641–658

Fig. 3 Sorting tasks in
descending order

Fig. 4 Assigning tasks to
resources and punishments and
rewards for 1,000 loop iterations

In addition, in LA-based ASPNs, every token has its own
automaton and, unlike previous adaptive models that require
creating new places and transitions for developing the artifi-
cial neural net, there is no need for new places and transitions.
Therefore, no complexity is involved in the design and there
are no increased calculation overloads.

In Fig. 4, every token selects an operation (one of the
resources in the grid) according to its probability vectors.
Then all tasks assigned to each resource are evaluated accord-
ing to the resource’s capacity and the deadline that the
user has specified for completion of the task, and each

operation is punished or rewarded. Res1,Res2,Res3, and
Res4 are the four candidate resources for assignment. Each
of these has a separate queue: Res1_Queue, Res2_Queue,
Res3_Queue, and Res4_Queue, respectively. In assigning
tasks to resources, the numbers of the tasks are placed in
these queues in ascending order of execution time, and the
Punish-Reward transition assigns a punishment or reward
to each resource. This routine is recursively performed
1,000 times on the resources, with the result of each itera-
tion saved in Recursive_Loop before proceeding to the next
stage.

123

J Intell Manuf (2015) 26:641–658 647

Fig. 5 Scheduling algorithm

Figure 5 shows the scheduling and assignment algorithm
for resource requests.

The tasks belong to applications that users have sent to the
grid for execution. Each user determines the QOS parameters
for execution of the application: the deadline, the budget, and
the optimization strategy to be used by the system. Simulated
algorithms can use time or budget optimization strategies, or
both. A user who chooses the time optimization strategy for
scheduling expects that the grid system will complete execu-
tion of the user’s application within the determined budget
and will minimize its execution time as much as possible.
Through the simulation, it can be determined which of the

time optimization algorithms will yield the shortest applica-
tion execution time, as the efficiencies of the time optimiza-
tion algorithms are compared.

Grid environment

The simulated environment for the grid consists of one or
more users and a number of resources. Users may enter the
grid system at any time and submit their applications for
execution. An application consists of independent tasks that
can each be executed on a desired resource. After entering
the system, the user acquires a mediator that performs its

123

648 J Intell Manuf (2015) 26:641–658

application scheduling, and after the application’s tasks have
been assigned to resources and have completed, the results
are given to the user.

User model

In the simulation experiments, the simulated environment is
a single-user environment unless a multi-user environment
is being modeled, and algorithms can be compared under
this condition. A single-user model does not mean that only
one user enters the system during the simulation, but rather
that there will be no interference between the scheduling
of distinct users. We cannot use two separate simulations
to compare algorithms because the applications should be
homogeneous.

When entering the system, users specify their budgets
and deadlines. Different experiments use different values for
these. We assume that submitted applications can always be
executed within the specified budget and deadline. If a user
requests cost optimization, then after examining the execu-
tion possibilities, the scheduling system should complete the
application within the time deadline and at the least possible
cost. For example, if a user specifies 200,000 for the budget
and 10,000 for the deadline and enters the system at time
5,000, the system should deliver the results of the user appli-
cation by time 15,000 and with the least possible cost (which
must, of course, be less than the budget).

Application model

An application consists of several independent tasks. Our
experiments always use 200 tasks. Each task has its own
length, expressed in millions of instructions (MI). Task
lengths are assumed to be variable. A (minimum … maximum)
range is selected for the task lengths and a value is randomly
selected from this range for each task length, so that the task
length distribution is uniform. The most homogeneous task
length distribution range is (100,000 … 110,000), and the
most heterogeneous is (10,000 … 200,000). The mean range
is always set to 105,000, so that it is possible to compare
an algorithm with different task length heterogeneities. For
convenience, the length unit is sometimes set to 1,000 MI
(Million Instructions), so that in our examples we show the
most heterogeneous state range to be (10 … 200).

Also, the tasks we study are computation intensive, and
they obtain their necessary values from an input file at the
outset and place their results in an output file at the end. The
tasks’ short interactions with their data are neglected, so that
only their computational aspects are considered.

Our implementation defines the task model in SPNP soft-
ware’s CSPL language http://www.cslibrary.org/research/
language.html.

Resource model

We use a sample construction named “GR1” for the grid
resources in our experiments. Although our construction is
a simulation, it is based on a real construction, GR1, that
is described in Buyya (2002). The properties of resources
in GR1 are such that different schedules can be meaning-
fully compared. All of these resources have a processor and
are used as shared space. Table 1 shows these constructions.
In this table, the resources are sorted in ascending order of
cost and are named accordingly, so that the workload of
each resource and its assigned tasks can be examined more
easily. For resource sorting, the order of the effective costs
G$/MI that are used is the same as the order of the declared
costs G$/sec. This is the desired order for cost optimization
algorithms. The algorithms begin with the least expensive
resource, R1, for task assignments.

As the declared costs of resources increase, their computa-
tional power (instructions executed per time unit) increases.
The last column displays the effective cost, which combines
the cost and power of each resource. The effective cost is the
declared cost divided by 1,000 times the resource power. It
should be noted that by cost (expensiveness or inexpensive-
ness), we mean effective cost (G$/MI), and that the declared
cost (G$/sec) is of no use because no results can be derived
from it.

The code for GR1 and its resources is shown in Fig. 6.
If only the declared cost of resources were considered, the

conclusion would be that resources with greater power cost
much more than resources with less power and that their use
is too expensive for users. However, it should be noted that it
seems that using R4 instead of R1 would not be cost effective,
because the power of a resource should be considered along
with its cost. For example, if the declared cost for a resource
is twice the cost of another resource, but its power is also
twice as great, the cost optimization algorithm will consider
the two resources to have the same value.

Common stages of the optimization algorithms

The optimization algorithms perform some common actions
before scheduling. These actions can be classified into the
following three stages:

Table 1 GR1 construction for resources

Effective cost
(G$/1,000MI)

Declared cost
(G$/sec)

Implementation
rate (MI/sec)

Resource
name

5 0.5 100 R1

6.25 1.5 240 R2

8.33 2.5 300 R3

12 6 500 R4

123

http://www.cslibrary.org/research/language.html
http://www.cslibrary.org/research/language.html

J Intell Manuf (2015) 26:641–658 649

void Res(GR1 R[4])//Resource policy
(FIX)
{ R[1].benf_cost=5;

R[1].cost=0.5;
R[1].Run_Rate=100;
R[1].no=1;
R[2].benf_cost=6.25;
R[2].cost=1.5;
R[2].Run_Rate=240;
R[2].no=2;
R[3].benf_cost=8.33;
R[3].cost=2.5;
R[3].Run_Rate=300;
R[3].no=3;
R[4].benf_cost=12;
R[4].cost=6;
R[4].Run_Rate=500;
R[4].no=4;

}//GR1 Difinition finished

Fig. 6 GR1 code and resources

• Resource identification: Resources that can be used to
execute tasks are detected, and their power and proper-
ties are determined through the grid information service
(GIS).

• Resource trading: Each resource is defined in terms of
cost per time unit (cost in seconds: G$/sec), then in terms
of the resource power per time unit (at the rate of one mil-
lion instructions per second: MI/sec), and the real effec-
tive cost of the resource is then determined—this is the
cost of executing one million instructions (cost per mil-
lion instructions: G$/MI).

• Resource sorting: Resources are sorted in ascending
order according to their effective costs (as determined
in the previous stage). Resources with lower costs are
preferred in task assignment. If two resources have the
same effective cost, the resource with more power is
preferred so that the algorithm has the greatest possible
efficiency. Thus, in order to produce the best ordering,
resources are sorted by two parameters: effective cost and
power.

In the next section we explain ALATO, our proposed LA-
based algorithm.

Our proposed approach (ALATO)

In what follows, the Minimum algorithm is the algorithm
with the shortest execution time. To attain the execution time
of the Minimum algorithm, we compare algorithms for time
optimization; rather than scheduling tasks, scheduling aims
for the shortest execution times. We assign a budget to each
million-instruction unit and consider budget when selecting

the appropriate resource for execution. Another way to cal-
culate computation time is to use our proposed algorithm
to obtain the minimum cost. The minimum cost method
is implemented by considering completion deadlines and
studying the resultant costs. A certain amount of time is then
subtracted from the deadline and the minimum cost method
is re-executed. This is done until a deadline is obtained in
which the minimum cost of the task execution is almost the
same as the budget specified by the user. In this case, the
deadline used in the minimum cost method is the same as the
minimum computation time.

The ALATO algorithm that we propose in this section is
space-shared and uses all-at-once scheduling. It sorts tasks
into queues in descending order according to their execution
length, which reduces the idle time of the more expensive
resources. A user who enters the system is accepted if the
user’s application can be executed within the specified dead-
line and budget, and once a user is accepted, completion
of the user’s application satisfying these ranges is guaran-
teed. For this purpose, at the end of the ALATO algorithm,
after scheduling tasks (mapping tasks to resources), a simple
acceptance control stage studies the total time of task exe-
cution and the cost of the application execution. If a user is
accepted, a distribution stage is executed in which the user’s
tasks are assigned to the resources specified in the scheduling.

The ALATO algorithm makes some changes to the imple-
mentation and the system of rewards and punishments in
the LATO algorithm, and it yields the best results of all the
algorithms mentioned. ALATO attempts to perform a com-
plex time optimization by assigning LAs to tasks, which is
more effective than the way LAs are used in exploratory algo-
rithms. The LAs have variable structures and their actions are
grid resources. The LA assigned to a task selects the resource
to which the task should be assigned. When all tasks have
selected their desired resources, they are rewarded or pun-
ished by the environment. Then all tasks perform another
resource selection that produces a new environment response.
This is repeated an indefinite number of times until all tasks
have found their appropriate resources and are assigned to
them.

Thus, the ALATO algorithm does not reach its final
scheduling through a single identification of tasks and
resources: rather, it performs several iterations, with a
new schedule produced in each iteration. The environment
responds to tasks (punishes or rewards them) according to
the resources they select. The tasks use this response in the
next iteration to produce a new schedule that is closer to the
optimum schedule. These iterations are repeatedly performed
until all tasks find their appropriate resources and no longer
change their decisions. That is, the iterations continue until
all LAs converge and produce the same schedule in subse-
quent iterations. This is the final schedule that will assign
tasks to resources.

123

650 J Intell Manuf (2015) 26:641–658

In each iteration of the ALATO algorithm, the schedule
that is produced is temporarily applied to the resources so
that it can be evaluated. For this purpose, every resource
has a temporary queue called the “assignment queue” that is
empty at the beginning of each iteration and to which tasks
are added when they select that resource.

The environment’s responses to the task LAs are deter-
mined by a time optimization algorithm that considers ideal
conditions. The environment uses the following three criteria
for rewarding or punishing tasks:

1- The total cost of the task execution should not be greater
than the budget specified by the user.

2- The execution time for tasks assigned to the busiest
resource shouldn’t be very different than for other
resources.

3- Each task should be assigned to a resource that can com-
plete its execution earlier than other resources.

The environment punishes tasks on the basis of the first
two criteria and rewards them according to the third. Con-
cerning the first criterion, if the total cost of task execution for
the selected resource is greater than the specified budget, the
task is punished. Punishment begins from the end of the task
queue for the most expensive resource to which at least one
task has been assigned. To punish these tasks and eliminate
them from the selected resource’s assignment queue, the dif-
ference between the cost of their execution using this resource
and their execution using the least expensive resource is sub-
tracted from their total execution cost. Punishment of a task
continues until its total cost is less than the specified bud-
get. The effect of this punishment is that tasks are directed to
less expensive resources, and the purpose of this stage is to
quickly lower costs and bring them to a value within the spec-
ified deadline by transferring tasks from the most expensive
to the least expensive resource. On the basis of the second
criterion, the environment punishes tasks in the assignment
queue for the busiest resource.

It should be noted that the busiest resource is not neces-
sarily the most expensive resource. We begin by selecting Y
tasks from the end of the busiest resource’s queue. If another
resource used in the scheduling (with at least one assigned
task) other than the most expensive resource can process a
task more quickly than the busiest resource, the environment
punishes the task so that it will select a more appropriate
resource in the next iterations; otherwise the task is not pun-
ished.

This is done for all Y tasks in the busiest resource’s queue
and leads to a more balanced distribution of resources for
the tasks. The value Y is calculated by Eqs. (5) and (6) and
considering Table 2 as follows:

X = (Taskno − A)/(resourceno − 1) (5)

Table 2 Summary of notations

Item Marks

Task numbers Tasksno

Resource number resourceno

Numbers of task are assigned to
the most expensive resource

A

Numbers of tasks are assigned
to the most prolific resource

B

where A is the number of tasks that are assigned to the most
expensive resource, resourceno is the number of resources,
and T askno is the number of tasks. X is thus the mean num-
ber of assigned tasks for resourceno-1 resources; it is the
number of tasks that should be distributed to each resource
excluding the most expensive one. (The reassignment of tasks
to resources excludes the most expensive resource because
it increases execution costs.)

Y = (B − X) ∗ resourceno − 2

resourceno − 1
(6)

where B is the number of tasks that are assigned to the most
prolific resource. Y is then the number of tasks that will be
selected from the end of the busiest resource queue. B is
always equal to or greater than A, because the number of
tasks in the busiest resource queue is greater than X, the mean
number of tasks distributed to other resources. The value
(resourceno-2) / (resourceno-1) is the ratio of the mean value
of the executable resources, excluding the most expensive
resource and the busiest resource, to available resources other
than the most expensive one.

Eventually, the environment rewards tasks according to
the third criterion. Tasks that have been able to attain their
completion time during or earlier than the previous iteration
are rewarded, provided that they have not been punished in
this iteration. This encourages every task to select a resource
that can execute it in the shortest time.

The ALATO algorithm initially sorts tasks in descending
order according to their execution lengths. It then finds the
appropriate resource for each task’s execution in a finite num-
ber of iterations. This algorithm eventually assigns tasks to
those resources, using all-at-once allocation for the schedul-
ing. In order to attain the best solution, various models
of standard LAs and various S models were examined. In
standard automata, the environment uses two punishment
responses and one reward response during the algorithm’s
learning, because if a task has not been punished accord-
ing to either of the first two criteria mentioned above and it
has reached its completion time during or before the previ-
ous iteration, it has possibly found an appropriate resource
for its execution. The punishment value in this state (0.1)
is greater than in the first state (0.01) and the second state

123

J Intell Manuf (2015) 26:641–658 651

Table 3 Conditions for the time optimization test with fixed budget

Parameter Value Parameter Value

Algorithm Variable Deadline 50,000

User number 1 Budget 150,000

Task no. 200 Task length range [10 . . . 200]

Resource configure GR1 Test no. 20

(0.05). The punishment value in the second state is greater
than in the first because shorter tasks have been assigned
to the busiest resource and the task accumulation for this
resource has increased. The increased punishment causes
tasks to place themselves in queues for less busy resources
and thus increase their load balance in the next iteration, and
it also significantly increases the rates at which the LAs con-
verge. S-model LAs were tested with different punishment
and reward values. These tests are discussed in the next sec-
tion, which evaluates BTO, AEBTO, LATO, the Minimum
algorithm, and our proposed ALATO algorithm for three dif-
ferent LA states.

Simulation and efficiency evaluation

For our implementation, we defined a task model in SPNP
software’s CSPL language (Buyya 2002). Four resources
with different execution rates and effective costs were used
and were sorted in ascending order of cost. In our simula-
tion, 200 tasks of variable lengths with times specified by the
user were examined, with different budget heterogeneities.
In our proposed ASPN, every token represents one user task
and includes information such as task length, priority number
based on task length, and the LA.

We tested our proposed algorithm in the following three
cases. Note that in the mentioned cases, ALATO per-
forms better than all related methods, specifically LATO
method.

Time optimization within specified time and budget (case I)

In the first case, we tested our proposed algorithm with vari-
ous LA models under the conditions listed in Table 3. In order
to make appropriate comparisons, the task lengths were con-
sidered to be the same in all models, with a uniform distri-
bution of task lengths within the range specified by the task
length parameter. To obtain the execution times under the
available algorithms for a specified deadline, 20 tests were
performed and the mean value was chosen for examination.

The conditions were assessed in the different states
of the standard automata (P-LRP) and S-model automata
(S-LRP, S-LRI and S-LReP).

Table 4 Changes of punishment and reward rate in the P-LRP model
and in time optimization algorithms with a fixed budget of 150000

(a,b) State 1 State 2 State 3 State 4

Algorithms (0.01, 0.01) (0.05, 0.05) (0.1, 0.1) (0.5, 0.5)

BTO 17,440 17,900 17,950 18,543

AEBTO 17,240 17,440 17,645 17,840

LATO 17,240 17,314 17,420 17,580

ALATO 17,175 17,275 17,354 17,408

Minimum 17,150 17,150 17,150 17,150

P-LRP model

For this model, the results for different punishment and
reward rates were compared. In this (P) model, response
Bi (n) with probability Ci is 1 (desired response) and with
probability 1-Ci is 0 (undesired response). Because two algo-
rithms based on learning automata, LATO and ALATO, were
implemented, so the punishment and reward rates for a budget
of 150,000 were considered for these algorithms. The results
for the standard automata are shown in Table 4. Since the
punishment and reward rates are equal, they should be small
to enable the algorithm to gradually reach the appropriate
schedule. For a fixed budget of 150,000 with the same pun-
ishment and reward rates, 0.01 is the best reward/punishment
rate for the LA-based algorithms.

Since the ALATO algorithm considers more task states,
ALATO’s LAs learn faster than LATO’s, as shown in Fig. 7.
By increasing the values of a and b, the growth of ALATO’s
execution time gradually becomes slower than in LATO.

In Fig. 7, the variable Delta_ALATO represents the time
difference between the ALATO algorithm and the Minimum
algorithm with different values for the rewards/punishments,
and Delta_LATO represents the same for the LATO algo-
rithm. The linear Delta_ALATO slope is less steep than the
linear Delta_ALATO slope, which means that ALATO learns
more quickly than LATO. In particular, ALATO assigns tasks
to resources more quickly than LATO. Also, setting a higher
reward and punishment rates just make a worse schedule, so,
we try to decrease these rates with respect to their run-time.

S-LRP model

In S- model methods, if operation αi is selected in the nth
iteration, the undesired environment response to this selec-
tion is βi(n) = 1 and the desired environment response
is βi(n) = 1/(1 + previous time/new t ime)—i.e., when
a less expensive resource is selected, a better response is
received from the environment. According to the results pre-
sented in the simulation section, the S-LRP method yields the
best result with a reward rate of 0.1 and a punishment rate of
0.05. These results are shown in Table 5. Since the punish-

123

652 J Intell Manuf (2015) 26:641–658

Fig. 7 Learning trend for the
ALATO and LATO algorithms

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460

0.01 0.05 0.1 0.5

Delta-ALATO

Delta-LATO

Linear (Delta-ALATO)

Linear (Delta-LATO)

Reward/Puish rate in LATO/ALATO

M
in

im
um

)
Se

c
(

Algs. Results Def

Table 5 Changes in punishment and reward rates in the S-LRP model
and in time optimization algorithms with a fixed budget of 150,000

(a,b) State 1 State 2 State 3 State 4

Algorithms (0.01, 0.01) (0.05, 0.05) (0.1, 0.1) (0.5, 0.5)

BTO 17,440 17,900 17,950 18,543

AEBTO 17,240 17,440 17,645 17,840

LATO 17,230 17,220 17,440 17,460

ALATO 17,168 17,160 17,370 17,400

Minimum 17,150 17,150 17,150 17,150

ment and reward rates are equal they should be small so that
the algorithm can gradually reach the appropriate schedule.
For a fixed budget of 150,000, the punishment and reward
rates are the same, and 0.05 is the best punishment/reward
rate for LA-based algorithms.

In this model, the desired environment response depends
on the low cost of the selected resource relative to the previous
iteration, and so the results of the S-LRP model are better than
the results of the P-LRP model.

Figure 8 shows the execution times in acceptable states
of the S-LRP automata and in a state where the punishment
and reward are 0.05. As can be seen, the ALATO algorithm
outperforms the LATO algorithm by about 60 time units, and
its difference from the optimal state is only 10 time units.

S-LRI model

In this model, the punishment rate is 0 (b = 0), and four
different values were tested for the reward rate. The results
are shown in Table 6. Since the punishment rate is 0, tasks that

select the incorrect resource are not punished and the LAs
cannot direct the proposed algorithm toward the appropriate
schedule.

S-LReP model

In this model, the punishment rate is much smaller than the
reward rate, and four different values for punishment and
reward were tested. The results are shown in Table 7.

Table 7 shows that the best punishment and reward rates
for S-LReP are a = 0.1 and b = 0.05. Considering that
the desired environment response to the selected operation
(αi) in the nth iteration is proportional to the low cost of the
selected resource relative to the previous iteration and that
the reward is 0.1, the less expensive the resource the more
probable it is that the operation and algorithm are directed
toward better scheduling that optimizes cost.

Figure 9 compares the automata in the LATO and ALATO
algorithms and compares both with the Minimum algorithm.
Here the best execution time for each automaton for a budget
of 150,000 is examined. The ALATO algorithm is much more
improved than the LATO algorithm from the point of view of
execution time and is therefore close to the optimal state. The
S-LReP model uses less time than the other automata because
the greater the reward-to-punishment ratio, the greater the
possibility of updating and selecting appropriate resources
with fewer iterations. The S model has thus yielded better
results than the P model. This is because by considering more
detailed changes, the precision of the automata is increased
and convergence to fixed probabilities for resource selection
is reached in less iteration. As a result, the necessary time for
stabilizing the automata is greater than for the P model.

123

J Intell Manuf (2015) 26:641–658 653

Fig. 8 Comparison of
execution times of algorithms in
S-LRP automata with fixed
budget of 150,000

17,900

17,440

17,220

17,160 17,150

17000

17050

17100

17150

17200

17250

17300

17350

17400

17450

17500

17550

17600

17650

17700

17750

17800

17850

17900

17950

18000

BTO AEBTO LATO ALATO Minimum

)
Se

c
(

Algorithms

Table 6 Changes of punishment and reward rates in S-LRI model and
in time optimization algorithms with fixed budget of 150,000

(a,b) State 1 State 2 State 3 State 4

Algorithms (0.01, 0.01) (0.05, 0.05) (0.1, 0.1) (0.5, 0.5)

BTO 17,440 17,900 17,950 18,543

AEBTO 17,240 17,440 17,645 17,840

LATO 17,238 17,314 17,420 17,580

ALATO 17,178 17,275 17,354 17,408

Minimum 17,150 17,150 17,150 17,150

Table 7 Changes of punishment and reward rates in S-LReP model and
in time optimization algorithms with fixed budget of 150,000

State 4 State 3 State 2 State 1 (a,b)

(0.5, 0.5) (0.1, 0.1) (0.05, 0.05) (0.01, 0.01) Algorithms

18,543 17,950 17,900 17,440 BTO

17,840 17,645 17,440 17,240 AEBTO

17,470 17,383 17,210 17,232 LATO

17,440 17,365 17,158 17,183 ALATO

17,150 17,150 17,150 17,150 Minimum

Time optimization within specified time with different
budgets (case II)

In this case, scheduling algorithms with the aim of time opti-
mization are compared for different budgets. In addition, it
is shown how much time each of the algorithms takes to
complete execution of the user applications under the same
conditions (users, applications, and resources). Obviously,

the algorithm that schedules tasks for the resources so that
the application results are delivered to the user in the shortest
time is more appropriate for the grid environment.

We tested ALATO with various models of learning
automata under the conditions listed in Table 8. The task
lengths in all models in the tests were considered equal, in
order to have appropriate comparisons, and there was a uni-
form distribution of task lengths within the task length range.
The “number of tests” parameter shows that 20 experiments
were performed to obtain an execution time within a specified
deadline for an application using the available algorithms,
and their mean values were selected for examination.

S-model automata were selected for the study because
they yield better execution times than standard automata.
Among the various S models, S-LReP automata yielded the
best results. Therefore, the results are assessed only for these
automata. Table 9 shows the results of experiments com-
paring time optimization algorithms for the S-LReP model
automata that yielded the best time. The first column shows
the budget specified by the user. The budget is changed from
130,000 to 180,000 in order to assess and compare the effi-
ciency of the algorithms with different budgets. The other
columns represent each of the algorithms, and the last col-
umn shows the Minimum algorithm’s execution time for the
different budgets.

In most cases, the minimum time was not realized by the
algorithms. Each table cell shows the execution time of the
application for the specified scheduling algorithm and bud-
get. For example, for a budget of 150,000, the BTO schedul-
ing algorithm completed execution of the user application
after 17,900 time units, while the LATO and ALATO algo-

123

654 J Intell Manuf (2015) 26:641–658

Fig. 9 Comparison of
execution times of automata
with fixed budgets of 150,000
obtained in the best state of each
automata

17,240

17,220
17,238

17,210

17,178

17,160

17,175

17,158

17,150
17,150

17,150 17,150

17,145

17,150

17,155

17,160

17,165

17,170

17,175

17,180

17,185

17,190

17,195

17,200

17,205

17,210

17,215

17,220

17,225

17,230

17,235

17,240

P-LRP S-LRP S-LRI S-LReP

LATO

ALATO

Minimum

(S
ec

)

Learning Automata Types

Table 8 Time optimization conditions with variable budgets

Parameter Value Parameter Value

Algorithm Alternate Deadline 50,000

User number 1 Budget Alternate

Task no. 200 Task length range [10...200]

Resource configure GR1 Test no. 20

Table 9 Execution time for applications in time optimization algo-
rithms with different budgets

Algorithms Budget

Minimum ALATO LATO AEBTO BTO

28,020 28,200 28,220 28,220 28,300 130,000

21,250 21,305 21,370 21,450 21,500 140,000

17,150 17,158 17,210 17,440 17,900 150,000

14,300 14,305 14,400 14,490 14,610 160,000

12,620 12,642 12,750 12,760 12,890 170,000

11,090 11,120 11,220 11,270 11,320 180,000

rithms required 17,210 and 17,158 time units, respectively.
Twenty tests were performed for each budget and the aver-
age of the resultant values for each algorithm was considered
as the mean time for task execution with the specified bud-
get. Note that while it is possible to compare algorithms with
a budget of 140,000 units, for example, we cannot place the
resultant values next to values resulting from another budget
such as 150,000 and meaningfully study the changes.

20

100

52

70

110

103

20 20

8

30

20

33

0

20

40

60

80

100

120

130,000 140,000 150,000 160,000 170,000 180,000

LATO-ALATO

Minimum-ALATO

Budget($)

(S
ec

)

Fig. 10 Comparison of ALATO, LATO, and minimum algorithms
with different budgets

Different values are obtained for the task execution times
for each of the algorithms; hence, we had to calculate the
average task execution time for each algorithm after several
experiments. The differences are due to the random distribu-
tion of task lengths within the specified range, and the more
heterogeneous the tasks (the wider the range of the task length
distribution), the greater are these differences.

Here the two intelligent algorithms (LATO and ALATO)
are compared. Figure 10 shows the results for these two algo-
rithms using different budgets. It can be seen that the execu-
tion times resulting from the ALATO algorithm are less than
for the LATO algorithm. The ALATO algorithm can save up

123

J Intell Manuf (2015) 26:641–658 655

10,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000

26,000

28,000

30,000

130,000 140,000 150,000 160,000 170,000 180,000

ALATO

Budget($)

(S
ec

)

Fig. 11 Trend of changes in task execution times for the ALATO
algorithm with different budgets

to 100 time units for small budgets, while the time saving for
large budgets is approximately 110 units.

To see that the improvement made possible by the ALATO
algorithm renders it the best proposed algorithm, ALATO
should be compared with the Minimum algorithm’s exe-
cution times for the tasks. Figure 10 shows the difference
between the results obtained by the ALATO algorithm and
the minimum execution times for different budgets. It can be
seen that this difference is insignificant and is less than 8 units
in all cases. When the execution time of tasks for all budgets
is greater than 10,000 units, this amount is negligible. There-
fore, it can be said that the ALATO algorithm produces as
close to the minimum execution time as is possible, and since
we know that in most cases this minimum is not attainable by
any algorithm, a new algorithm that can yield at most 8 units
of improvement is not worth considering.

As was seen earlier, all proposed algorithms have the same
trend in the ratio of execution time to budget. For example,
the trend for the LATO algorithm is shown in Fig. 11. The
most important aspect of these changes is the decrease of
task execution time as a result of budget increases. This hap-
pens because when the proposed budget is increased; user
applications can use more resources to execute their tasks,
including more expensive resources, and thus decrease their
execution time. This trend of decreasing time can be seen for
all algorithms. Indeed, the decrease is most rapid at the out-
set, while the greater the budget is, the less is the decrease, so
that the change in execution time with respect to the budget is
nonlinear. Initially, when the budget is small, the algorithms
should use a small number of inexpensive resources, so that
the execution cost is less than the budget; but as the budget
increases, the algorithms can use more expensive resources
for task execution and thus reduce execution time. Obviously,
additional resources gradually become more expensive, and

as these expensive resources are used more, budget increases
have smaller impacts on reducing execution time. Eventu-
ally, when all resources have been used for task scheduling
for some specified budget, budget increases make no differ-
ence to execution time and the graph becomes a horizontal
line. In contrast, the initial point of the graph has the smallest
budget for delivering the tasks within the deadline, which is
of course the minimum cost for the computations. For the
deadline of 100,000 units used in these tests, the minimum
cost was computed as 115,000 units, and so we started our
experiments with a larger budget of 120,000 units.

Time optimization for different heterogeneities (case III)

In this case, we examined our proposed algorithm along with
S- model LAs for all four resources. We tested S-model LAs
with different values for the punishment and reward rates.
Among the S-model methods, as will be seen, the best results
for an operation selected in the nth iteration were obtained
by the S-LReP method with a reward rate of 0.1 and a punish-
ment rate of 0.05. Every task has a unique length specified
in terms of MI units. Task lengths are always considered
variable within the selected (minimum … maximum) range.
A value is randomly selected from this range for each task
length, so that the distribution of task lengths is uniform. For
the most homogeneous state, the range of task lengths was
chosen to be (100,000 … 110,000), and for the most het-
erogeneous state, it was chosen to be (10,000 … 200,000).
The simulation conditions are listed in Table 10. The task
length range is variable, and the experiments are performed
for different ranges (i.e., different heterogeneities).

Twenty experiments were performed to obtain the exe-
cution time values for the algorithms in the heterogeneous
states, and the average values were selected for examination.

Since the S-model automata yield better time than stan-
dard automata, these automata were selected for study. Of
the various S models, the S-LReP automata yielded the best
results, so only the results for these automata are exam-
ined. Twenty tests were performed for each heterogeneity,
and the average value obtained for each of the algorithms
was considered to be the average execution time for the
tasks.

Table 10 Conditions for time optimization experiment for different
heterogeneities and budget of 150,000 (in sec)

Parameter Value Parameter Value

Algorithm Alternate Deadline 20,000

User number 1 Budget 150,000

Task no. 200 Task length range Alternate

Resource configure GR1 Test no. 20

123

656 J Intell Manuf (2015) 26:641–658

Fig. 12 Comparison of
minimum, LATO and ALATO
algorithms for different
heterogeneities

17,000
17,025
17,050
17,075
17,100
17,125
17,150
17,175
17,200
17,225
17,250
17,275
17,300
17,325
17,350
17,375
17,400
17,425
17,450
17,475
17,500

LATO

ALATO

Minimum

Fig. 13 Results of time
optimization algorithms for
homogeneous and
heterogeneous tasks

17,000

17,050

17,100

17,150

17,200

17,250

17,300

17,350

17,400

17,450

17,500

BTO AEBTO LATO ALATO Minimum

Hemogenous

Hetrogenous

(S
ec

)

Algorithms

The LATO and ALATO algorithms use LAs, and the
ALATO algorithm improves the results of the LATO algo-
rithm. Here we study the effect of the heterogeneity of tasks
on the improvements achieved by the LATO and ALATO
algorithms.

Figure 12 shows the results for these two algorithms, along
with the results of the Minimum algorithm, for different het-
erogeneities. It can be seen that the improvement achieved
by LATO and ALATO scheduling increases with the hetero-
geneity of the tasks. The time reduction trend for ALATO
is faster than for LATO, and the speed with which ALATO
reaches the minimum execution time is greater than it is for
LATO.

As can be seen, ALATO comes closer to the optimum
(Minimum) algorithm for high heterogeneities than does
LATO.

Figure 13 shows the final results achieved by the time
optimization algorithms for two states, one homogeneous and
the other heterogeneous. In the homogeneous state, the range
of the uniform and random distribution of task lengths is (100
… 110), and in the heterogeneous state it is (10 … 200).
Except for the BTO algorithm, which has almost the same
performance in the two states, the other algorithms achieved
some improvement in the heterogeneous state compared to
the homogeneous state. This improvement is more significant
for LATO and ALATO than for the other algorithms. Also,

123

J Intell Manuf (2015) 26:641–658 657

it can be seen that results obtained from the algorithms in
the homogeneous state are closer to each other than in the
heterogeneous state, where the execution times for tasks are
very different for the different algorithms.

Conclusion

This study proposed a new ASPN that uses LAs to improve
execution time in an economic grid. The proposed ASPN
falls into the fusion hybrid category. The new design is
quite flexible in dynamic environments such as grid net-
works, because LAs do not require training with previous
data. In addition, every token in an LA-based ASPN has its
own automaton, and there is no need to add new transitions
and places, both of which make the design of the net com-
putationally simple, with no increase in computation over-
load. Through our simulated time optimization algorithms,
we showed that the ALATO learning algorithm outperforms
exploratory algorithms for highly heterogeneous tasks and
executes user applications on the grid within a specified bud-
get in shorter time than the other algorithms. In the sequel,
we conclude that the performance of ALATO is higher than
the existing algorithms in the proposed examples. In general,
Therefore, we are able to apply this method in the grid sys-
tems that are similar to the cases we have tested in the test
bed.

Our planned future work will address the new concept of
insurance. We will consider insurance for time delays, with
a user receiving compensation when there is a delay in the
delivery of the application results. These delays can have dif-
ferent causes, such as network failures, resource failures, and
other possible events about whose occurrence the system has
no prior information. A grid can insure a network and dif-
ferent resources and equipment against these events through
insurance agencies and, in turn, charge clients insurance fees
to protect them from possible delays. To this end, a compre-
hensive analysis of the events that may affect the execution of
tasks in the grid should be made. Through an examination of
previous data, insurance costs, and possible compensations,
it is possible to compute an increase in execution costs, and
this amount can be charged to clients who request insurance
against some or all delaying events.

References

Aissani, N., Bekrar, A., Trentesaux, D., & Beldjilali, B. (2011).
Dynamic scheduling for multi-site companies: A decisional
approach based on reinforcement multi-agent learning. Journal of
Intelligent Manufacturing, doi:10.1007/s10845-011-0580-y.

Al-Ali, R., Rana, O., Walker, D., Jha, S., & Sohail, S. (2002). G-QOSM:
Grid service discovery using QOS properties. Computing and Infor-
matics Journal, Special Issue on Grid Computing, 21(4), 363–382.

Al-Khasawneh, A., & Bsoul, M. (2010). Job scheduling in economic
grid environments. International Journal of Information and Com-
munication Technology, 2(3), doi:10.1504/IJICT.2010.032410.

Arab, A., Ismail, N., & Lee, L. S. (2011). Maintenance scheduling
incorporating dynamics of production system and real-time informa-
tion from workstations. Journal of Intelligent Manufacturing, doi:10.
1007/s10845-011-0616-3.

Archimede, B., Letouzey, A., Memon, M. A., & Xu, J. (2013). Towards
a distributed multi-agent framework for shared resources schedul-
ing. Journal of Intelligent Manufacturing, doi:10.1007/s10845-013-
0748-8.

Assuncao, M., & Buyya, R. (2006). An evaluation of communication
demand of auction protocols in grid environments Technical report,
University of Melbourne, Melbourne, Australia.

Baranauskas, V., Bartkevičius, S., & Šarkauskas, K. (2006). Coloured
Petri nets—tool for control systems learning. Electronics and Elec-
trical Engineering., 4, 41–46.

Bilyk, A., & Mönch, L. (2010). A variable neighborhood search
approach for planning and scheduling of jobs on unrelated paral-
lel machines. Journal of Intelligent Manufacturing, doi:10.1007/
s10845-010-0464-6.

Boppana, R., & Halldorsson, M. M. (1992). Approximating maximum
independent sets by excluding subgraphs. BIT Magazine, Published
By BIT Computer Science and Numerical Mathematics, 32(2), 180–
196. doi:10.1007/BF01994876.

Bui, T. N., & Eppley, P. H. (1995). A hybrid genetic algorithm for
the maximum clique problem. In Proceedings of 6th international
conference on genetic algorithms, San Francisco, CA, USA, pp. 478–
484.

Buyya, R. (2002). Economic-based distributed resource management
and scheduling for grid computing, Ph.D. Thesis, School of Com-
puter Science and Software Engineering, Monash University, Mel-
bourne, Australia.

Buyya, R. (2002). The World-Wide Grid (WWG). http://www.buyya.
com/ecogrid/wwg/.

Czajkowski, K., Foster, I., Kesselman, C., Sander, V., & Tuecke, S.
(2002). SNAP: A protocol for negotiating servi2ce level agreements
and coordinating resource management in distributed systems. In 8th
workshop on job scheduling strategies for parallel processing, pp.
153–183.

Fleszar, K., Charalambous, C., & Hindi, K. S. (2011). A variable neigh-
borhood descent heuristic for the problem of makespan minimisation
on unrelated parallel machines with setup times. Journal of Intelli-
gent Manufacturing, doi:10.1007/s10845-011-0522-8.

Guinet, A. (1995). Scheduling independent jobs on uniform parallel
machines to minimize tardiness criteria. Journal of Intelligent Man-
ufacturing, 6, 95–103.

Hirel, C., Wells, S., Fricksy, R., & Trivedi, K. S. (2000). ISPN: An
integrated environment for modeling using stochastic petri nets. In
Center for advanced computing and communication department of
electrical and computer engineering Duke University. Durham, NC
27708–0291.

Jain, L. C., & Martin, N. M. (1998). Fusion of neural networks, fuzzy
sets, and genetic algorithms: Industrial applications, 1st ed.. FL,
USA: CRC Press ISBN: 0849398045.

Jeng, M. D., Lin, C. S., & Huang, Y. S. (1999). Petri net dynamics-
based scheduling of flexible manufacturing systems with assembly.
Journal of Intelligent Manufacturing, 10, 541–555. doi:10.1023/A:
1008960721370.

Khosla, R., & Dillon, T. (2002). Intelligent hybrid multi-agent architec-
ture for engineering complex systems. International Conference on
Neural Networks, 4, 2449–2454. doi:10.1109/ICNN.1997.614540
Houston, TX.

Mahdavifar, Y., & Meybodi, M. R. (2007). Cost-time optimization in
economic computational grids. In Proceedings of the third informa-

123

http://dx.doi.org/10.1007/s10845-011-0580-y
http://dx.doi.org/10.1504/IJICT.2010.032410
http://dx.doi.org/10.1007/s10845-011-0616-3
http://dx.doi.org/10.1007/s10845-011-0616-3
http://dx.doi.org/10.1007/s10845-013-0748-8
http://dx.doi.org/10.1007/s10845-013-0748-8
http://dx.doi.org/10.1007/s10845-010-0464-6
http://dx.doi.org/10.1007/s10845-010-0464-6
http://dx.doi.org/10.1007/BF01994876
http://www.buyya.com/ecogrid/wwg/
http://www.buyya.com/ecogrid/wwg/
http://dx.doi.org/10.1007/s10845-011-0522-8
http://dx.doi.org/10.1023/A:1008960721370
http://dx.doi.org/10.1023/A:1008960721370
http://dx.doi.org/10.1109/ICNN.1997.614540

658 J Intell Manuf (2015) 26:641–658

tion and knowledge technology, Mashad, Iran: Ferdowsi University
of Mashad.

Mahdavifar, Y., & Meybodi, M. R. (2007). Time optimization in eco-
nomic computational grids using learning automata. In Proceedings
of the first Iranian data mining conference. Tehran, Iran: Amirkabir
University of Technology.

Mirzaee, A., & Rahimzadeh, P. (2011). A agent-based decentralized
algorithm for resource semantic discovery in economic grid. In IEEE
3rd international conference on communication software and net-
works (ICCSN), pp. 306–311. doi:10.1109/ICCSN.2011.6013721.

Moore, J., & Hahn, L. (2003). Petri net modeling of high-order genetic
systems using grammatical evolution. Bio Systems, 72(2), 177–186.
doi:10.1016/S0303-2647(03)00142-4.

Murata, T. (2002). Some recent applications of high-level Petri nets.
IEEE International Symposium on Circuit and System, 2, 818–821.
doi:10.1109/ISCAS.1991.176488.

Narendra, K. S., & Thathachar, M. A. L. (1989). Learning automata:
An introduction. Englewood Cliffs, NJ, USA: Prentice-Hall, ISBN
0134855582.

Pasandideh, S. H. R., Niaki, S. T. A., & Hajipour, V. (2011). A multi-
objective facility location model with batch arrivals: Two parameter-
tuned meta-heuristic algorithms. Journal of Intelligent Manufactur-
ing, doi:10.1007/s10845-011-0592-7.

Peterson, J. (1981). Petri net theory and the modeling of systems. Engle-
wood Cliffs, NJ, USA: Prentice-Hall, ISBN 0136619835.

Pla, A., Gay, P., Meléndez, J., & López, B. (2012). Petri net-based
process monitoring: A workflow management system for process
modelling and monitoring. Journal of Intelligent Manufacturing,
doi:10.1023/A:1012292102123.

Pooranian, Z., Shojafar, M., Abawajy, J. H., & Abraham, A. (2013).
An efficient meta-heuristic algorithm for grid computing. Journal
of Combinatorial Optimization (JOCO), doi:10.1007/s10878-013-
9644-6, Springer.

Pooranian, Z., Shojafar, M., & Javadi, B. (2012). Independent task
scheduling in grid computing based on queen bee algorithm. IAES
International Journal of Artificial Intelligence (IJ-AI), 1(4), 171–
181. doi:10.11591/ij-ai.v1i4.1229.

Pooranian, Z., Shojafar, M., Abawajy, J. H., & Singhal, M. (2013b).
GLOA: A new job scheduling algorithm for grid computing. Inter-
national Journal of Interactive Multimedia and Artificial Intelligence
(IJIMAI), 2(1), 59–64. doi:10.9781/ijimai.2013.218.

Pooranian, Z., Shojafar, M., Tavoli, R., Singhal, M., & Abraham, A.
(2013b). A joint meta-heuristic algorithm applied in job scheduling
on computational grids. Informatica, 37(2), 157–164.

Poznyak, A. S., & Najim, K. (1997). Learning automata and stochastic
optimization. NY: USA: Springer, ISBN: 3540761543.

Radakovič, M., Obitko, M., & Mařík, V. (2011). Dynamic explic-
itly specified behaviors in distributed agent-based industrial solu-
tions. Journal of Intelligent Manufacturing, doi:10.1007/s10845-
011-0593-6.

Reddy, S. R. (2006). Market economy based resource allocation in grids
Master’s thesis. Indian Institute of Technology, Kharagpur, India.

Reisig, W. (1985). Petri nets: An introduction, EATCS monographs on
theoretical computer science. USA: Springer. ISBN: 3642699707.

Sarhadi, A., & Meybodi, M. R. (2010). New algorithm for resource
selection in economic grid with the aim of cost optimization using
learning automata. International Conference on Challenges in Envi-
ronmental Science and Computer Engineering (CESCE), 1, 32–35.
doi:10.1109/CESCE.2010.185.

Schwardy, E. (2001). Optimization of Petri nets structure using genetic
programming. Dept. of Cybernetics and Artificial Intelligence. Fac-
ulty of Electrical Engineering and Informatics. University of Tech-
nology Koice. Slovakia.

Shojafar, M., Barzegar, S., & Maybodi, M. R. (2011). Time optimizing
in economical grid using adaptive stochastic Petri net based on learn-
ing automata. In Proceedings of International Conference on Grid
Computing & Applications (GCA), WORLDCOMP, pp. 67–73.

Shojafar, M., Pooranian, Z., Abawajy, J. H., & Meybodi, M. R. (2013).
An efficient scheduling method for grid systems based on a hierar-
chical stochastic Petri net. Journal of Computing Science and Engi-
neering (JCSE), 7(1), 44–52. doi:10.5626/JCSE.2013.7.1.44.

Venkataramana, R. D., & Ranganathan, N. (1999). Multiple cost opti-
mization for task assignment in heterogeneous computing sys-
tems using learning automata. Heterogeneous Computing Work-
shop (HCW’99), IEEE Computer Society, pp. 137–145. doi:10.1109/
HCW.1999.765118.

Zhou, M. C., & Jeng, M. D. (2002). Modeling analysis simulation
scheduling and control of semiconductor manufacturing systems: A
Petri net approach. IEEE Transaction on Semiconductor Manufac-
turing, 11(3), 333–357. doi:10.1109/66.705370, ISSN: 0894–6507.

Zimmermann, A., Rodriguez, D., & Silva, M. (2001). A two phase
optimization method for Petri net models of manufacturing systems.
Journal of Intelligent Manufacturing, 12, 409–420.

123

http://dx.doi.org/10.1109/ICCSN.2011.6013721
http://dx.doi.org/10.1016/S0303-2647(03)00142-4
http://dx.doi.org/10.1109/ISCAS.1991.176488
http://dx.doi.org/10.1007/s10845-011-0592-7
http://dx.doi.org/10.1023/A:1012292102123
http://dx.doi.org/10.1007/s10878-013-9644-6
http://dx.doi.org/10.1007/s10878-013-9644-6
http://dx.doi.org/10.11591/ij-ai.v1i4.1229
http://dx.doi.org/10.9781/ijimai.2013.218
http://dx.doi.org/10.1007/s10845-011-0593-6
http://dx.doi.org/10.1007/s10845-011-0593-6
http://dx.doi.org/10.1109/CESCE.2010.185
http://dx.doi.org/10.5626/JCSE.2013.7.1.44
http://dx.doi.org/10.1109/HCW.1999.765118
http://dx.doi.org/10.1109/HCW.1999.765118
http://dx.doi.org/10.1109/66.705370

	ALATO: An efficient intelligent algorithm for time optimization in an economic grid based on adaptive stochastic Petri net
	Abstract
	Introduction
	Related work
	The system model
	Grid environment
	User model
	Application model
	Resource model
	Common stages of the optimization algorithms

	Our proposed approach (ALATO)
	Simulation and efficiency evaluation
	Time optimization within specified time and budget (case I)
	P-LRP model
	S-LRP model
	S-LRI model
	S-LReP model
	Time optimization within specified time with different budgets (case II)
	Time optimization for different heterogeneities (case III)

	Conclusion
	References

