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Abstract Due to the growing interest for multimedia contents by mobile users,
designing bandwidth and delay-efficient distributed algorithms for data searching over
wireless (possibly, mobile) “ad hoc” Peer-to-Peer (P2P) content Delivery Networks
(CDNs) is a topic of current interest. This is mainly due to the limited computing-plus-
communication resources featuring state-of-the-art wireless P2P CDNs. In principle,
an effective means to cope with this limitation is to empower traditional P2P CDNs
by distributed Fog nodes. Motivated by this consideration, the goal of this paper is
twofold. First, we propose and describe the main building blocks of a hybrid (e.g.,
mixed infrastructure and “ad hoc”) Fog-supported P2P architecture for wireless con-
tent delivery, namely, the Fog-Caching P2P architecture. It exploits the topological
(possibly, time varying) information locally available at the serving Fog nodes, in
order to speed up the data searching operations performed by the served peers. Sec-
ond,we propose a bandwidth and delay-efficient, distributed and adaptive probabilistic
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search algorithm, that relies on the learning automata paradigm, e.g., theFog-supported
Learning Automata Adaptive Probabilistic Search (FLAPS) algorithm. The main fea-
ture of the FLAPS algorithm is the exploitation of the local topology information
provided by the serving Fog nodes and the current status of the collaborating peers,
in order to run a suitably distributed reinforcement algorithm for the adaptive dis-
covery of peer-to-peer and peer-to-fog minimum-hop routes. The performance of the
proposed FLAPS algorithm is numerically evaluated in terms of Success Rate, Hit-per-
Query, Message-per-Query, Response Delay and Message Duplication Factor over a
number of randomly generated benchmark CDN topologies. Furthermore, in order to
corroborate the actual effectiveness of the FLAPS algorithm, extensive performance
comparisons are carried out with some state-of-the-art searching algorithms, namely
the Adaptive Probabilistic Search, Improved Adaptive Probabilistic Search and the
Random Walk algorithms.

Keywords Fog computing · Content delivery networks (CDNs) · Fog-Caching P2P
(FCP2P) · Adaptive probabilistic data search (APS) · Learning automata (LA) ·
Reinforced Q-learning · TCP/IP overlay networks

1 Introduction

A recent forecast by Cisco points out that mobile multimedia content delivery will
cover around 72% of the overall mobile network data traffic by 2020 [1]. Themain fea-
ture of this service is that the requested contents are densely concentrated in the space
so that some of them are asynchronously requested several times by multiple (e.g.,
possibly, collaborative) clients equipped with bandwidth and computing resource-
limited wireless devices. Motivated by this consideration, wireless Fog-Caching is
gaining momentum under the umbrella of the emerging 5G networking paradigm
[2,3]. By design, the Fog-Caching paradigm (also referred to as Femto-Caching) aims
at avoiding resource-wasteful content duplication by locally caching the most popular
data at the proximate serving Fog nodes. This paradigm is, indeed, gaining exten-
sive attention, due to its intrinsic feature of reducing both content acquisition latency
and network backhaul data traffic [3]. However, since Fog-Caching aims at mov-
ing locally popular contents to Fog nodes and Fog nodes are, by design, small-size
data centers, a direct utilization of the client–server paradigm for content delivery
may overload the Fog nodes, especially when the spatial distribution of the querying
clients is unbalanced [4]. In such cases, the workload of the caching Fog nodes may
be alleviated by allowing proximate clients to act as peers, in order to balance the
distribution of the queried data over both collaborating peer nodes and serving Fog
nodes.

1.1 Application scenario and main contributions of the paper

Motivated by these considerations and by referring to the application scenario of
Fig. 1, the objective of this paper is threefold. First, we propose a hybrid architecture
(e.g., the FCP2P architecture) for wireless Fog-supported CDNs. This architecture
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Fig. 1 The proposed FCP2P technological platform

suitably integrates the complementary paradigms of the (infrastructure) Fog-Caching
and the (“ad hoc”) P2P, in order to sustain a transport-layer overlay network built
up by end-to-end reliable TCP/IP connections. Second, by exploiting the local
information provided by the serving Fog nodes about the inter-peer distances and
peer-to-peer link gains, we design and test a bandwidth and delay-efficient dis-
tributed route-discovering algorithm, namely, the Fog-supported Learning Automata
Adaptive Probabilistic Search (FLAPS) algorithm. It aims at dynamically discover-
ing minimum-hop P2P and F2P routes over the currently built up overlay network.
The goal is to forward the query messages generated by the requiring peer nodes
to suitable caching nodes at the minimum bandwidth cost. Specifically, the main
distinguishing features of the proposed FLAPS are the following ones: (i) it empow-
ers each network node by a Learning Automata (LA) agent, in order to implement
the routing process in an adaptive and distributed way; (ii) it implements a suitable
reward-penalty mechanism for adaptively improving the actions performed by each
LA; and (iii) it accounts for the current values of the success rate, message dupli-
cation factor, response delay and per-query message hit, in order to adaptively tune
the reward and penalty parameters. Third, we numerically test the performance of
the proposed FLAPS over a number of benchmark CDN topologies. Finally, we
compare the obtained FLAPS performance with the corresponding ones of some
state-of-the-art search algorithms, namely, the Adaptive Probabilistic Search (APS)
[5], the Improved APS (IAPS) [6], and the Random Walk (RW)-based [7] algo-
rithms.
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1.2 Related work and comparisons

An examination of the (recent) related work corroborates the conclusion that research
on CDNs is till now pursued by moving along two main parallel (e.g., nearly disjoint)
directions.

Specifically, a first (more recent) research direction focuses on the architectural
design of emerging infrastructure (e.g., structured) virtualized Fog-Caching networks
for low-latency content delivery [8–12]. Toward this end, the authors of [8] introduce
an architecture for the optimized placement of device clones (e.g., Virtual Machines
(VMs)) over multiple spatially distributed serving nodes. The target is to improve the
Quality of Experience (QoE) perceived by the clients while achieving load balancing
over the available serving nodes. Similar VM-allocation problems are also considered
in [9], in order to reduce node energy consumptions and in [10] under different VM
scheduling disciplines. More recently, the authors of [11] afford the joint optimization
of data caching over multiple computing nodes and data retrieving by clients. The
resulting joint algorithm in [11] minimizes both the data acquisition delay and the
data placement cost. In [12], the authors consider a multi-tier network of computing
nodes, in which multiple heterogeneous remote servers serve multiple clients, while
each client can offload/retrieve data to/from multiple proximate Fog nodes. The algo-
rithm proposed in [12] maximizes the network-wide revenue under both storage and
communication constraints. Overall, like our contribution, all the mentioned papers
promote the utilization of the Fog paradigm as a viable means for local data caching.
However, unlike our contribution, these papers do not consider the integration of the
Fog infrastructure with the P2P one.

A second (more consolidated) research direction focuses on the design of distributed
search algorithms for data retrieving over “ad hoc” (e.g., unstructured) P2P CDNs [5–
7,13–21]. Specifically, the (somewhat traditional) approach pursued by Gnutella [13]
assumes that each peer is joint to an arbitrary set of neighbors and the search process
relies on a blind (e.g., context and content oblivious) uncontrolled flooding of query
messages over all neighbors. Although quite simple to implement, the uncontrolled
flooding is prone to storm phenomena, and this triggered further research on improved
context and content-aware search strategies for P2P applications. They moved along
several directions, that exploit the statistical and topological properties of the random
walks [7], small-world graphs [14] and peer heterogeneity [15], in order to suitably
driving the search process. “Ad hoc” solutions for coping with churn phenomena
induced by peer mobility are presented in [16] and [17]. After recognizing that search-
ing for the best path over a direct graph is typically anNP-hard problem, some biology-
inspired meta-heuristics have been also applied for performing data search over P2P
CDNs, namely, the Ant Colony-based (AntNet) meta-heuristic in [20] and the dis-
tributed query routing by Ant Colony (SemAnt) in [21]. Roughly speaking, both these
approaches use local information and reputation-based learning methods, in order to
bias the path-search process toward themost promising candidates. However, the space
of the solutions spannedby these approaches is large, and, then, thesemethods typically
suffer by slowconvergence.Lastly, someadaptive probabilistic search approaches have
been proposed (e.g., the APS in [5] and the IAPS in [6]), in order to reduce the search
space. The common feature of the APS and IAPS approaches is that they drastically

123



FLAPS: bandwidth and delay-efficient distributed searching…

reduce the search space by implementing and updating suitable score functions, in
order to store the most promising searching paths. Overall, like our contribution, all
these papers deal with the common general problem of the design of resource-efficient
distributed data search algorithms over “ad hoc” P2P overlay networks.

However, we point out that the main goal of this paper is to design and test the
performance of a self-tuning distributed route discovery algorithm, that exploits the Q-
learning reinforcement paradigm, in order to adaptively build up minimum-response-
time P2P transport routes over heterogeneous Fog-supported time-varying wireless
CDNs. Specifically, the proposed learning-based route discovery algorithm (e.g., the
FLAPS one) self-selects (in an iterative way) the best set of actions to be implemented
to build up the target P2P routes by using some suitable learning functions. These
last dynamically reward/penalize the previously performed actions on the basis of the
feedback messages received from the neighbors of the nodes that participate to the
current routes. Interestingly, in the FLAPS algorithm, the feedback messages carry
out information about: (i) the inter-peer distances and (ii) the round-trip delays and
throughput of the inter-peer TCP/IP transport connections, and this information is
gathered and broadcast by the supporting Fog nodes.

The rest of the paper is organized as follows. In Sect. 2, we present the main func-
tional blocks of the proposed hybrid FCP2P architecture for wireless content caching
and retrieving. Afterward, in Sect. 3, we detail the proposed route discovery FLAPS
algorithm, while Sect. 4 investigates about some related implementation aspects. After
detailing the tested application scenarios and performance metrics in Sect. 5, Sect. 6
presents the performance of the FLAPS algorithm and compares it against the corre-
sponding ones of the APS, IAPS and RWalgorithms. Finally, in Sect. 7, we summarize
the main attained results and give some hints for future research.

2 The proposed FCP2P hybrid networking architecture for data
searching over CDNs

The basic building blocks of the proposed FCP2P system architecture is sketched in
Fig. 1. It leverages Device-to-Device (D2D) and Fog-to-Peer (F2P) end-to-end TCP/IP
connections, in order to dynamically build up P2P and F2P transport-layer links,
respectively. So doing, FCP2P gives rise to (possibly, multiple and heterogeneous)
hierarchical overlay networks, that are composed by (see Fig. 1): (i) clusters of nearby
collaborating peers; (ii) Fog-Cluster Heads (F-CHs), that act as local gateways for
the connected peers and (iii) serving Fog nodes. Each Fog node acts as an Internet
gateway for the served F-CHs. Furthermore, since it is equipped with a small-size
data center (e.g., a Fog-Let (FL); see Fig. 1), it provides also structured caching and
computing support to the connected F-CHs and peers. A Fog node may also directly
acts as a cluster header when it is surrounded by a number of nearby peers. According
to the P2P paradigm, each peer node may simultaneously act as server and client for
the nearby peers and may forward both query messages and queried data.

In Fig. 1 each peer may connect to other proximate peers by dynamically setting up
D2D connections [4]. According to the emerging 5G vision [3] and Fog paradigm [22],
these connections may employ different (possibly, heterogeneous) transmission tech-
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nologies at the physical layer, like, for example, short-range Bluetooth technologies,
medium-range WiFi technologies, or even long-range cellular 3G/4G technologies.

After performing node clustering (see Fig. 1), the resulting overlay network is
described by an undirected graph: G � <V, E>, where V (resp., E) is the set of
the graph nodes (resp., graph edges). Each node v ∈ V represents a peer node, an
F-CH node, or a Fog node, while each edge e ∈ E indicates a transport-layer TCP/IP
bi-directional connection. Furthermore, a node label (resp., edge label) indicates the
overall up/downstream bandwidth available at the node (resp., the transport capacity of
the corresponding TCP/IP two-way connection). In the sequel, the set Vi ⊆ V, i ∈ V ,
denotes the set of peer neighbors of the i-th wireless peer node wpi .

2.1 File tables and learning automata

Each peer node may directly connect to other peer nodes or send its request to the
nearest Fog node, in order to forward the received request to other Fog nodes or F-CH
nodes (see Fig. 1). For this purpose, each F-CH node serves some peers and supports
the Fog node traffic when the traffic load increases. An F-CH node also performs
synchronization functions. The FLAPS algorithm is carried out by the F-CHs in a
distributed manner, in order to increase the response rate and decrease latency such as
elaborated in [23]. Besides, each FL of Fig. 1 is equipped with the list of the neighbor
peers. In order to increase the response rate and decrease the latency, the FLAPS
algorithm enumerates the generated per-FN and peer-file type queries and broadcasts
this information over the network. For this purpose, the FLAP algorithm sorts the
score probability of each active node in a not increasing fashion.

Each FN is equipped with the list of the peers that are successfully traversed, in
order to find the searched file. We introduce a simple assumption here: we select the
nearest peers (i.e., in terms of hop number from the query requester) that host the
requested file. We named these nearest peers as the responder peers. By definition, a
query answer consists of sending a file to the requester peer. In order to forward the
query and reach the most suitable FN, we resort to a learning automata approach. It
implements an adaptive Q-reinforcement learning mechanism, (e.g., the FLAP), that
can select the best route actions on the basis of the feedback messages received from
the FCP2P environment. For this purpose, each peer is equipped with a list of the
stored information (or files) as in Table 1. It can deliver these files to its neighbors.
Table 1 reports the instance of aQuery Table (QT). It stores the file information which
is available at the hosting FN. Specifically, each query table comprises four columns,
that report the file type, format, number of file copies, and probability scores. These
last indicate the storing probabilities of file types at time slot n and at each peer.

Table 1 Query table of the
status of each node at time slot n

File type m Nkm Score probability (sp)

Video ∗.mp4 100 spk1
Audio ∗.amc 200 spk2
Text ∗.txt 300 spk3
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Fig. 2 The relationship between LA at the k-th peer node Ak and the rest of the network. QT, Query table;
Dk , degree of the k-th peer node; ak (t), set of actions of k-th peer node at slot t ; and βk (t), set of the
feedback messages from the network in response to the action ak (t) at time slot t

As is shown in Fig. 2, each LA performs a set of actions toward its neighbors and
receives their feedback, in order to decide the set of actions at the next iteration. The set
of learning automata is denoted by: <A, a>, where A ≡ {A1, A2, . . . , AN } is the set
of learning automata corresponding to the set of nodes (e.g., N is the nodes number),
and a ≡ {a1, a2, . . . , aN } denotes the set of actions, so that ak ≡ {a1k , a2k , . . . , arkk } is
the list of actions available at the learning automata Ak , while rk is their number. The
actual value of rk depends on the connection degree of the k-th node. Specifically, we
consider an LA at the k-th node Ak that runs over n time slots (e.g., t ∈ {1, . . . , n}) and
produce rk actions ak and rk feedback messages. At each iteration t , LA can select one
of the action for the next iteration based on their probabilities and punishes/rewards
them for the next iteration. In the designed LA algorithm, the value of a reward a
(if a positive feedback is received) or penalty b (if a negative feedback is received)
is constant and unique for each action. The two relationships used for updating the
reward and penalty probability values are detailed in Eqs. (1) and (2), respectively.
Specifically, the reward rate increases in Eq. (1) the probability to take the action. In
a dual way, the punishment rate Eq. (2) reduces the probability of the action.

pkj (t + 1) = (1 − a) × pkj (t),

pki (t + 1) = pki (t) + a × [1 − pki (t)] + spkm,

∀k, j; j �= i, i ∈ {1, . . . , rk}, k ∈ {1, . . . , N }; (1)

pkj (t + 1) = b

rk − 1
+ (1 − b) × pkj (t),

pki (t + 1) = (1 − b) × pki (t) + spkm,

∀k, j; j �= i, i ∈ {1, . . . , rk}, k ∈ {1, . . . , N }. (2)
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In Eqs. (1), (2) pki is the probability of the i-th action at LA Ak . In the FLAPS frame-
work, the set βk(t) of the environmental feedback received by the k-th node of Fig. 2
at slot t comprises the current numbers of hops (or, if available, the current Round-
Trip-Times (RTTs)) and the current throughput of all TCP/IP connections sustained by
the neighbors of node k, while the corresponding action set ak(t) collects the routing
actions currently available at node k. The components of the sets {βk(t)} are periodi-
cally gathered by the serving FNs of Fig. 1 and broadcast to the served nodes. The set
ak(t) is periodically self-tuned by the k-th node by applying the reward/punishment
mechanism of Eqs. (1) and (2). Therefore, in order to traverse a routing path, we need
to select its next hop based on the aforementioned probabilities and punish the other
possible paths.

At the beginning, the table entries are populated by the same number of files [such
as Nk1 number of file type 1 (e.g., *.mp4), Nk2 number of file type 2 (e.g., *.amc),
etc.]. The score probability spkm is the number of occurrences of the file type m at
node k, e.g., the chance that node k hosts file type m. Two events that may happen in
FCP2P networks are leaving and joining nodes from/to the network. A uniform and
equalized distribution of entries in the query table is assumed before the separation
of a node from the network. This guarantees that the attenuated bloom filters (i.e.,
data structures that exist in each node of the system) [24] in its query table remain
accessible, while the node is offline. The node should be synchronized to the current
network status when it rejoins the FCP2P network. For this purpose, it is needed
to firstly find the set of its active neighbors. For accomplishing this task, each node
may use handshaking messages [25], so to update its query table by sending updating
requests to its neighbors. Without loss of generality, let dk be the number of active
neighbors of the k-th peer node, with dk less than the node degree Dk . Then, the k-th
peer begins to send the querymessages overdk routingpaths using the highest rewarded
actions. One of the tasks of Ak is to update the dk at k-th peer, before starting to send the
query messages. Besides, in FLAPS, the action set of each learning automata consists
to select one of the neighbors based on their probabilities. The starting probability
of finding the j-th file type for each active path that can be traversed from k-th peer
node is defined as: pkj (1) = 1

dk
, at t = 1. Furthermore, the score probability of

k-th peer node at time slot n for the m-th file type is evaluated on the basis of the
previous probabilities of the neighbors that host the m-th file type. These values can
be calculated by normalizing the received queries and their LAprobabilities as follows:

spkm(n) ≡
{∑n

t=1
∑Nkm

l=1 pkm(t)/Nkm, if Nkm �= 0, ∀k = {1, . . . , N },
0, if Nkm = 0, ∀k = {1, . . . , N }, (3)

where: (i) Nkm is the number of m-th file type copies at node k; (ii) n is the number of
time slots for each Ak ; and (iii) pkm(t) is the action probability at the k-th peer node at
time slot t for the m-th file type. In addition, the FLAPS algorithm stores the score of
each file based on the results of the former query searches. The normalization of Eq. (3)
forces the learning algorithm to be consistent over all nodes and suitably redirects. It
forces to give priority to some queries to reach the data and decreases the missed data
and increases the hit rates. Hence, by proceeding backward from the responder node
to the requester one, each learning automata at the visited nodes punishes the own
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not-visited neighbors. If there exist multiple paths from the responder to the requester,
the shortest path is selected and all nodes on the shortest path are rewarded by the
same quota, while the other not-visited nodes will be punished by the same quota.
However, if the requested file is not found or the selected node has been previously
visited, FLAPS punishes by b units the not-visited neighbors.

3 The architecture of the FLAPS algorithm

The proposed FLAPS algorithm comprises two phases, namely, the search phase and
theneighbor selectionphase.The latter also includes thementioned reward/punishment
mechanism, in order to promote inter-peer collaboration.

3.1 The search phase

During the search phase, when a node receives a request message for a file, it searches
for the requested file in its local database. If the node finds the file in the own database,
it sends a response message to the requiring node by forwarding a routing table. In
order to limit the response delay, we need to keep the response rate high. For this
purpose, FLAP updates the score probability of m-th file type and reward/punishes
the actions of each visited peers by applying the LA rules of Eqs. (1), (2). If the
requested file is not found, the search phase for the file will continue by selecting the
k neighbors (e.g., k walkers) with the highest probability values over all neighbors. If
at least one neighbor retrieves the file in own query table, the neighbor node will be
awarded. The search ends when the file is found or the Time-To-Leave (TTL), (e.g.,
is the maximum number of hops crossed by each query message) expired. FLAP uses
the Internet Control Message Protocol (ICMP) signaling messages to escape network
crowding and avoid a requested service not being available or neighbor peers being
unable to be reached. Therefore, only the available peers are guaranteed to be visited
by the FLAP during the search phase. As a consequence, if the requested file does not
exist, the node forwards the request to its neighbors through its query table (Table 1).
So doing, FLAP by-passes the occurrence of infinite loops.

3.2 Neighbor selection phase

Selected neighbors propagate the query messages, in order to locate the requested file.
After receiving the feedback from the environment, if k/2 of selected neighbors find
the file, the probability values of the selected neighbors increase, otherwise a punished
probability value is updated by the FLAPS. The following mechanism is used to better
balance the query traffic. Before successfully answering a query, a peer p checks if
any of its neighbors has the requested file. In the affirmative case, it delegates the
responsibility to answer the query to the peer with the smallest in-degree over those
that host the queried file. Otherwise, the peer directly sends the file to the requester.
However, there is a good chance that some of the neighbors of a peer also have the
same files. Therefore, the less loaded peer is forced to serve a part of the load. Neighbor
selection for request forwarding is based on the information stored in the node query
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tables (see Table 1), e.g., the number of effective demands (file score probabilities),
file types and file type probabilities. The requiring node selects the neighbors with the
highest scores for the requested file type. Lastly, since each node has limited counting
capacity and input bandwidth, FLAPS needs to implement a control policy, in order
to manage the incoming traffic and limit the per-node received query messages. For
this purpose, a least-recently-used (LRU) policy is used by FLAP to regulate the input
traffic at each node. This policy avoids the chunk of some meaningless messages by
ICMP and, thus, enables the network’s capacity to serve meaningful new messages in
the near future. Algorithm 1 reports the pseudo-code of the FLAP algorithm.

4 Implementation aspects and complexity

In this section, we focus on themain system issues thatmay impact on the actual imple-
mentation of the proposed FLAPS algorithm and the supporting FCP2P networked
architecture of Fig. 1.

4.1 Medium access

The FLAPS algorithm runs atop an overlay network built up by transport-layer TCP/IP
connections, and this leaves room for various options at theMAC layer. However, since
in the considered application scenario of Fig. 1: (i) the peer nodes may be mobile
and they are typically bandwidth and energy-limited; and (ii) the Fog nodes could
be exploited for performing peers’ coordination, we believe that the reservation-based
cognitiveOrthogonal TDMA(OTDMA)mediumaccess protocol recently presented in
[26] could be a viable choice. Figure 3 reports the basic elements of the corresponding
frame structure.

In a nutshell, the OTDMA protocol in [26] operates as follows:

(i) the time axis is partitioned into alternating up and downstream frames. In each
cluster, the time duration of each frame is adaptively set by the corresponding
Fog node on the basis of the traffic (e.g., number of query messages and volume
of required data) to be transported;

(ii) at the beginning of each up frame, the acceding peers send in upstream to the
corresponding coordinating Fog nodes Request-to-Access (RA) messages. Each
RA message specifies the volume of the data to be sent, the residual energy
of the peer node and the needed average energy per transmitted bit (e.g., the
average level of the fading of the utilized link). Since the RA messages sent in
upstream may collide, a suitable cognitive scheduling approach is developed in

Fig. 3 Up/downstream frame structure of the reservation-based OTDMA protocol in [26]
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[26], in order to guarantee a per-peermaximumcollision rate and, then, a per-peer
minimum access throughput;

(iii) after gathering all the (collision-free) RA messages, the coordinating Fog node
allocates to the requiring peers non-overlapping (e.g., orthogonal) transmit time
windows. The duration of each time window is optimized on the basis of the
information carried out by the corresponding RAmessages, in order to maximize
the overall network-wide bandwidth usage. The notification of the allocated time
windows is broadcast in downstream to all connected peers;

(iv) finally, during the next upstream frame, each peer transmits its data over the
assigned time window without experiencing data collision.

Before proceeding, we point out that, in the considered FCP2P scenario of
Fig. 1, there are three main reasons for adopting the (aforementioned) reservation-
based OTDMA protocol in place of pure contention-based Carrier Sensing Multiple
Access/Collision Avoidance (CSMA/CA) MAC protocols. First, CSMA/CA-based
MAC protocols cannot guarantee a per-peer minimum access throughput. Second,
CSMA/CA-based protocols are prone to data collisions, that, in turn, waste both
bandwidth and energy resources. On the contrary, the reservation-based OTDMA
in [26] guarantees collision-free data access and limits also the collision rate of the
RA messages. Third, the hybrid channel control access working mode of the legacy
IEEE802.11e standard already supports reservation-based TDMA scheduling mech-
anisms, so that it already provides the basic functions for the implementation of the
OTDMA protocol in [26].

4.2 Node clustering and construction of the overlay network

The proposed FLAPS algorithm runs atop an overlay network whose (possibly, time
varying) topology is obtained by performing a suitable clustering of the peer nodes.
For this purpose, the recently proposed Prolong Stable Election Protocol (P-SEP) in
[27] for node clustering in Fog- supported wireless sensor networks looks as an attrac-
tive solution. Shortly, P-SEP implements a suitable iterative greedy-type clustering
algorithm, whose target is the maximization of the peer lifetime. In order to attain this
goal, P-SEP exploits the information on both the inter-peer distances and peer-to-peer
link gains that is broadcast by the serving Fog nodes. At the core of P-SEP, there is
the selection of a number of F-CHs, in order to attain load balancing, reduction of
the energy consumed by the peer nodes and stretching of the lifetime of the (energy
limited) peers. In a nutshell, the main features of P-SEP may be so summarized [27]:
(i) P-SEP accounts for the sizes of the built up clusters by optimizing the average
F-CH-to-Peer distances; (ii) P-SEP accounts for the energy budget of each peer, in
order to maximize the network-wide lifetime; (iii) P-SEP directly outputs the (afore-
mentioned) graph: G � <V, E> of the resulting overlay network composed of the
build up TCP/IP connections.

4.3 Peer time synchronization

In our framework, the goal of the Peer Time Synchronization (PTS) is twofold. First,
it allows the proposed FLAPS algorithm to proceed in a round basic way [see the n
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Fig. 4 Implementation of the message passing mechanism under FLAP. QT Query table

index in Eq. (3)]. Second, it allows implementing the framing structure of Fig. 3 for
TDMA-basedMACprotocols. For this purpose, as in [28], the distributed Timing Syn-
chronization Function (TSF) of the (aforementioned) hybrid channel control access
working mode of the IEEE802.11e could be used as a basic building block. Specifi-
cally, the approach developed in [28] does not require the utilization of network-wide
master clocks, but it exploits the periodic transmission of beacons performed by the
IEEE802.11e protocol, in order to allow the inter-peer tuning of the timing infor-
mation. Hence, according to the IEEE802.11e-compliant approach pursued in [28],
beacon packets may be directly included at the beginning of each frame of Fig. 3, in
order to attain distributed cluster-wide peer synchronization.

4.4 Format of the query messages and message passing

According to Fig. 2, a requester peer node (e.g., node k) sends the query message
to the selected destination. Figure 4 shows the inter-node message passing mecha-
nism implemented by FLAP. The query message includes the TTL, the MaxRound,
the ordered list of the nodes visited by the query message, and the requested file
identification.

At this regard, we point out that FLAP exploits the Round-Trip-Time (RTT) mea-
surements and SYN/SYNACKsignaling segments already provided by state-of-the-art
TCP suites, in order to attain the node-to-node synchronization needed by the message
passing mechanism of Fig. 4 without introducing further protocol overhead.

4.5 Distributed implementation of the designed reinforcement learning
algorithm and implementation complexity

In this subsection, we focus on the implementation of the reinforcement learning
algorithm implemented by the proposed FLAP algorithm.

According to Algorithm 1, at first, FLAP equips the CDN graph with the list of
LA for each active node. Then, it uniformly distributes the files over the nodes and
gives primary score probability to each file type of the peer nodes and names them as
sp0 and N 0

km , respectively. Then, FLAP starts the main loop that performs the query
search for the specific file q(m) over the CDN. In the searching phase, FLAP needs
to search, at first, in the requester local database QTreq, and, if the file is found, it
sends back it to the requester. Otherwise, FLAP starts the requester LA Areq by a
recursive search over its neighbors and updates Areq and spreqm. The requester gives

123



FLAPS: bandwidth and delay-efficient distributed searching…

specific TTL and, while traversing, FLAP puts the visited peers into the queue qq. If
FLAPS retrieves the file before TTL expiring, it rewards all the actions and updates
their score probabilities for that specific file type, while it penalizes the other paths.
Finally, FLAPS punishes the double visited peers and updates the corresponding score
probabilities.

Algorithm 1 FLAPS pseudo-code

INPUT: G =< V, E >, TTL
OUTPUT: Found node of q(m)
1: while TTL and MaxRound are not attained do
Search q(m) inside req database;

2: if q(m) ∈ QTreq then
Update Areq, spreqm;

3: else Find dreq neighbors by using Eqs. (1) and (2);
req=found(neighbor to search);
Recursively search QTreq for q(m) and update Areq, spreqm;

4: end if
5: end while
6: if q(m) retrieving occurred within MaxRound and TTL then
Send back the found node;

7: else Send message q(m) not found in CDN and punish all qq nodes using
their LAs;

8: end if
9: return found node of q(m).

In order to analyze the performance-versus-complexity trade-off, let� be themaxi-
mum number of degree of nodes in graphG (e.g.,� � maxk={1,...,N } Dk) and let N be
the number of nodes to be traversed by each query. If the time needed to check the local
query table for the specific file is negligible, the time complexity of the query search
in the FLAPS is on the order of O(1). The overall storage requirement of the FLAPS
algorithm is the order of MaxRound × N × log2(�). Table 2 reports the memory
requirement and computational complexity of the proposed FLAP and compare them
against the corresponding ones of the IAPS [6], APS [29] and k-RW [7] algorithms.
An examination of Table 2 points out that the computational complexities of the IAPS,
APS and RW algorithms are� times larger than that of the FLAPS, while the memory
requirement scales as log(�).

Table 2 Storage requirements and computational complexities R := Maxround

FLAPS IAPS [6] APS [29] RW [7]

Storage requirement O(R × N × log2(�)) O(R × N × �) O(R × N × �) O(R2 × N × �)

Computational complexity O(1) O(�) O(�) O(R × �)
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We conclude this Sect. 4 by pointing out that the implementation of the proposed
FLAPS algorithm is distributed, and, being structured in rounds (see Eq. (3)), its
convergence rate does not depend on the diameters (in the number of hops) of the
underlying peer clusters.

5 Simulated scenarios and considered performance metrics

In this section, we describe the considered test scenarios and the adopted performance
metrics.

5.1 Setup description

We resorted to random graph models in order to simulate the overlay P2P transport-
layer network and used the PeerSim software [30] for the simulations. All simulations
are carried on a desktop equipped with Intel core 2 dual 2.6 GHZ CPU and
4.0 GB RAM. In our simulations, the number of peers is set to 1000 with 20% of
failure rate. In addition, the peer-to-peer average path delay is 200 (ms) [31]. The
average node inter-request time for query searches is set to 3000 (ms), and, each node
has an average degree of 8. Furthermore, we set the maximum number of walkers to
15 and the TTL is set to 6 hops.

Table 3 summarizes the main simulated parameters and their default values. In the
simulated scenarios, 150 files are used. The adopted inquiry and repetition strategies
follow the protocols described in [32]. Nevertheless, in the simulations carried out in
this paper, we adopt a less skewed distribution, where the files in the 90th percentile of
the ranking are about 40% of the total number of stored files. Furthermore, three file
extensions are employed, e.g. .mp4, .amc, and .txt, with work sizes less than 5 MB.
For each file type, 1000 files are evenly scattered over the nodes of the network [31].
The used values for the reward and punishments b coefficients are 0.05 and 0.01,
respectively.

Table 3 Main simulated
parameters

Parameters Value

Number of nodes 1000

P2P model Pure

Graph model Random

Average node in/out degrees 8

Number of walkers (k) 15

TTL (time-to-leave) 6

Number of files 150

Replication distribution Zipf (α = 0.82)

Query distribution Zipf (α = 0.9)

Number of requester nodes 100

Number of queries per requester node 300
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5.2 Definition of the adopted performance metrics

In the carried out simulations, the followingfiveperformancemetrics havebeennumer-
ically evaluated:

(i) Success rate (SR): it is the ratio between the number of successful queries and
the total number of queries;

(ii) Hit-per-query (HpQ): it is the per-query number of successfully retrieved files;
(iii) Message-per-query (MpQ): it is the per-query number of sent messages;
(iv) Response delay (RD): it is the time elapsed from sending the query request to

receiving the corresponding response; and,
(v) Messages duplication (MD): it is the per-query average number of duplicated

messages needed for completing the search process.

6 Performance evaluation and comparisons

In this section, we test and compare the performance of the proposed FLAPS algorithm
against the corresponding ones of some competitors, namely, the APS [29], IAPS
[6] and k-RW based [7] search algorithms. Shortly, we point out that: (i) the APS
algorithm uses the feedback from the previous searches to efficiently perform future
searches. Also, it uses k walkers out of � connections at each node and updates the
probability functions which are used to increase the probabilistic forwarding to reach
the destination; (ii) the IAPS algorithm relies on an ant-based multi-agent system
and utilizes independent walkers that are distributed, over a P2P network. It uses a
reward/punishing mechanism that is driven by the ants’ movements along the routing
paths; and, (iii) the k-RW algorithm randomly chooses one neighbor and continues
this process until the query destination is reached. Although the k-RW decreases the
overhead of the query messages, its average response delays are typically quiring large
[7], and the reported results confirm, indeed, this conclusion.

6.1 Success rate

The first group of carried out tests aims to evaluate and compare the SR of the FLAPS,
APS, IAPS and k-RW search algorithms. The obtained numerical results are reported
in Fig. 5. An examination of this figure leads to two insights. First, the SR performance
of the FLAPS algorithm improves for increasing values of the number k of walkers
and approaches 85% at k = 15. This value is around 39, 9 and 3% better than the
corresponding ones attained by the k-RW, APS, and IAPS, respectively. These results
support the effectiveness of the learning mechanism implemented by the FLAPS algo-
rithm. Second, the SR curve of the FLAPS algorithm quickly increases for values k
of the walkers up to 10 and, then, it takes a quasi-flat behavior. Hence, values of k as
small as 8–9 suffice for attaining the most part of the final SR value.
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Fig. 5 Success rate-versus-number of walkers k

6.2 HpQ and MpQ performances

The second group of numerical tests focuses on the numerical evaluation of the HpQ
and MpQ performance metrics of the FLAPS, APS and IAPS algorithms normalized
with respect to the corresponding ones of the k-RW algorithm. An examination of the
plots of Fig. 6 leads to the following three main conclusions. First, since the k-RW
algorithm tends to generate large volumes of querymessages, theHpQperformances of
the APS-type algorithms are better than the corresponding one of the k-RW. Second,
for values of k larger than 5, the HpQ performance of the FLAPS outperforms the
corresponding ones of the APS and IAPS of about 12 and 7%, respectively. Third,
although the values of the MpQmetric increase for increasing values of the performed
hops under all the tested algorithms, the rate of increment of the FLAPS algorithm is
less than the corresponding ones of the APS and IAPS algorithms. Roughly speaking,
this is due to the fact that the punishing/rewarding policy implemented by the learning
phase of the FLAPS algorithm increases the probability of the selected walkers to
participate in the file search, and this reduces, in turn, the per-query average number of
generated messages. At this regard, an examination of the plots of Fig. 6b corroborates
the conclusion that, for values of k larger than 7–8, the FLAPS MpQ values are less
than the corresponding ones of the k-RW, IAPS and APS of about 2, 12 and 23%,
respectively.

6.3 Normalized response delay

The third group of simulations aims at evaluating the average per-query normalized
response delay and the corresponding per-hop normalized average delay. The obtained
numerical results (expressed in terms of multiple of the round time) are reported in
Fig. 7a and b, respectively.

They refer to a TTL value of 6 hops. An examination of these figures leads to two
main conclusions. First, the quasi-flat behavior of the lowest plot of Fig. 7a supports
the conclusion that the response delay of the k-RW algorithm is not sensitive to the
considered number of hops. However, the corresponding behaviors of the response
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Fig. 6 k Number of walkers;HpQ hit-per-query;MpQmessage-per-query. aHpQ-versus-number of walk-
ers normalized to k-RW, b MpQ-versus-number of walkers normalized to k-RW

delays of the APS, IAPS, and FLAPS algorithms are bell-shaped and picked around
k = TTL/2 (e.g., k = 3 in Fig. 7a). Hence, in terms of response delay, we have
that (i) the APS-based algorithms are effective for values of k below k = TTL/2
and (ii) due to its self-learning feature, the FLAPS algorithm outperforms the APS
and IAPS ones at k ≤ TTL/2. Second, the numerical results of Fig. 7b supports the
conclusion that the APS-based algorithms outperform the k-RW in terms of per-hop
average delay. Roughly speaking, this is due to the fact that the k-RW algorithm tends
to generate numbers of per-hop messages larger than the corresponding ones of the
APS-based algorithms. Furthermore, due to the exploitation of its learning capability
in the neighbor selection phase, the FLAPS algorithm outperforms the IAPS and APS
ones of about 5 and 13%, respectively (see the right-most bars of Fig. 7b).

6.4 Message duplication

The fourth set of simulations aims at evaluating and comparing the MD performance,
in order to test the actual effectiveness of the FLAPS algorithm in reducing the colli-
sion rate of the utilized walkers. The obtained numerical results are reported in Fig. 8,
and their examination leads to two main conclusions. First, the APS-based algorithms
(largely) outperform the k-RW one in terms of the MD metric. Roughly speaking,
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Fig. 7 aWalker distance (in number of hops) at each query, b average number of crossed hops

this is due to the fact that the APS family of algorithms enhances its search capability
by jointly exploiting peer priority, and query tables. Second, the FLAPS algorithm is
capable to effectively exploit its self-learning capability, in order to reduce the occur-
rence of message failures and, then, lower message duplications. As a consequence,
a comparison of the lowest plots of Fig. 8 shows that MD performance of the FLAPS
algorithm is better than the corresponding ones of the IAPS and APS algorithms of
about 18 and 25%, respectively.

6.5 Performance effects of the size of the overlay network

The fifth set of simulations aims at investigating the performance sensitivity of the
considered search algorithms on the sizes and topology features (like the average
in/out node degree) of the considered overlay networks. For this purpose, as in [6],
pure and uniform distributions have been used for the random generations of the
overlay networks tested in this section. The obtained average results are reported in
Table 4, and they refer to a replication ratio of 1%.

An examination of Table 4 leads to three main conclusions. First, the values of the
performance metrics of the FLAPS algorithm do not significantly vary, even when
the sizes of the simulated networks increase by a factor 5 (compare the first four
columns of Table 4). Second, under all tested configurations, the performance metrics
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Fig. 8 MD-versus-number of walkers

Table 4 Average performances, U uniform distribution; N number of peers. The reported values are aver-
aged over 15 walkers

(N ,Topology) SR HpQ MpQ DM SR HpQ MpQ DM

FLAPS IAPS

(103, Pure) 83.5 4.5 30.6 6.7 × 104 80.6 4.3 34.7 8.2 × 104

(5 × 103, Pure) 80.2 4.0 33.1 6.3 × 104 76.2 3.8 36.8 7.9 × 104

(103, U ) 88.4 4.7 40.6 6.9 × 104 84.2 4.6 44.9 8.4 × 104

(5 × 103, U ) 85.9 4.6 46.7 6.8 × 104 79.6 4.4 47.6 8.2 × 104

APS k-RW

(103, Pure) 74.6 4.1 39.4 8.9 × 104 46.4 1.5 31.5 5.4 × 105

(5 × 103, Pure) 72.0 3.1 44.1 8.5 × 104 49.2 1.1 28.3 5.0 × 105

(103, U ) 78.2 4.3 47.7 9.6 × 104 38.3 0.9 45.5 5.6 × 105

(5 × 103, U ) 75.5 3.5 50.0 9.3 × 104 40.0 0.8 42.2 5.3 × 105

of the FLAPS algorithm are uniformly better than the corresponding ones of the
considered competing algorithms. This confirms the performance scalability of the
proposed search algorithm, even under random network settings.

6.6 Performance effects of the number of cluster headers

The last set of carried out simulations aims at giving insight into the performance
sensitivity of the considered search algorithms on the number of selected F-CHs.
Roughly speaking, we expect that the average cluster size decreases and the average
number of inter F-CH messages increases when the number of selected F-CHs grows.
In order to evaluate the relative effects of these two phenomena, we have performed
simulations in which k/2 randomly selected peers act as F-CHs (i.e., same as the setup
defined in [22]). Table 5 reports the obtained numerical results. They refer to three
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Table 5 Effects of the CDN
density

Scenario 1 Scenario 2 Scenario 3

Peers 64 256 1024

F-CHs 8 32 256

Requests 165 640 2750

SR (%) 85.5% 83.3% 82.1%

different scenarios, namely scenarios 1, 2 and 3. In scenario 1 (resp., scenarios 2 and 3),
the average number of nodal degree is 3 (resp., 6 and 10). All the simulated parameters
are as in Table 3. Roughly speaking, we expect that the average success rate decreases
for increasing values of the CDN density, e.g., by passing from scenario 1 to scenario
3. This is due to the fact that the total number of query requests quickly increases by
passing from scenario 1 to scenario 3 (see the third row of Table 5). However, the
numerical results reported by the last row of Table 5 show that the decrement of the
success rate suffered by the FLAP algorithm is limited up to 3.4%. This support the
conclusion that the FLAP performance well scales with the density of the underlying
CDN.

7 Conclusions and future work

This paper focuses on the problem of file search in (possibly, heterogeneous) Fog-
supported P2P CDNs. Its main goal is to leverage the local (possibly, time varying)
information about the inter-peer distances and states of the inter-peer TCP/IP con-
nections provided by the serving Fog nodes, in order to reduce the network-wide
message duplication (e.g., bandwidth consumption) and search latency. Toward this
end, a hybrid (e.g.,mixed infrastructure—“ad hoc”) architecture for the Fog- supported
CDN has been presented (namely, the FCP2P architecture), and the functionalities
of its main building blocks have been described. Afterward, the FLAPS algorithm
has been proposed, in order to implement latency-efficient file searching over Fog-
supported P2P overlay networks. Remarkable features of the FLAPS algorithm are
that: (i) its implementation is distributed over the available peer nodes; and, (ii) it is
capable of adapting to the (possibly, time varying) topological properties of the avail-
able overlay network. Both these features are attained by equipping each peer node by
an LA that acquires context information by the environment (e.g., proximate peers and
serving Fog nodes) and, then, processes it through a suitable Q-learning reinforce-
ment algorithm. The FLAPS performance is numerically tested and compared to the
corresponding ones of some state-of-the-art algorithms, namely, the APS, IAPS and
k-RW algorithms. The obtained numerical results corroborate the conclusion that the
proposed FLAPS algorithm outperforms the considered competing ones in terms of
latency and success rate.

In principle, the presentedwork could be further expanded along threemain research
directions. First, the presented version of the FLAPS algorithm operates on single-
indexed search tables (see Table 1). Hence, according to the emerging paradigm of the
information-centric networking [12], it could be of interest to develop a generalized
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version of the FLAPS algorithm for the efficient data retrieving over multi-indexed file
tables. Second, current placement algorithms for Fog-Caching do not still account for
the client preference, client experience, Fog storage and bandwidth resources. Hence,
it could be of interest to develop data placement algorithms that account for both
spatial and temporal popularity of the cached data. Finally, emerging Virtual Reality-
based applications involves intensive data analytic operations that, in turn, demand
for largely duplicated databases. Hence, a third research direction may concern how
intelligently to perform Fog-caching, in order to maximize the database reuse and,
then, speed up the corresponding file retrieving operations.
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