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Abstract. A grid computing environment provides a type of distributed computation that is unique because it is not centrally
managed and it has the capability to connect heterogeneous resources. A grid system provides location-independent access to
the resources and services of geographically distributed machines. An essential ingredient for supporting location-independent
computations is the ability to discover resources that have been requested by the users. Because the number of grid users can
increase and the grid environment is continuously changing, a scheduler that can discover decentralized resources is needed. Grid
resource scheduling is considered to be a complicated, NP-hard problem because of the distribution of resources, the changing
conditions of resources, and the unreliability of infrastructure communication. Various artificial intelligence algorithms have been
proposed for scheduling tasks in a computational grid. This paper uses the imperialist competition algorithm (ICA) to address
the problem of independent task scheduling in a grid environment, with the aim of reducing the makespan. Experimental results
compare ICA with other algorithms and illustrate that ICA finds a shorter makespan relative to the others. Moreover, it converges
quickly, finding its optimum solution in less time than the other algorithms.
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1. Introduction23

Application of a new technology, or scientific24

evolution, requires scientific proof and practical imple-25

mentation. Because it is time-consuming to implement26

practical research and mistakes can arise because of in27

attention to problems in theoretical subjects, there is28

a need to use simulations in some contexts instead of

∗Corresponding author. Mohammad Shojafar, Department of
Information Engineering, Electronics (DIET), Sapienza Univer-
sity of Rome, Via Eudossiana 18, 00184 Rome, Italy. E-mail:
shojafar@diet.uniroma1.it.

real implementations. The computations that are needed 29

to simulate and study all aspects of scientific research 30

projects require a significant amount of computational 31

power that a single computer would take too much time 32

to provide. Superscalar computers, vector processors, 33

and pipeline processing were proposed to address this 34

problem. Although they provide more computational 35

power and greater speed than a single computer, tech- 36

nological limitations related to speed and the high cost 37

of their design and manufacture make them available 38

only to users with no financial limitations. Grid compu- 39

tations, which are based on distributed systems, were 40

proposed to solve such problems. Grid systems have 41
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2 Z. Pooranian et al. / Using imperialist competition algorithm

been proposed as a solution overcoming the limitations42

of hardware availability and computer locations, so43

that unused computers and their computational power44

can be exploited [35]. Grid computing systems are45

well-known for solving complicated large-scale prob-46

lems in science, engineering, and finance [19], and47

have provided a wide range of heterogeneous and dis-48

tributed resources for data-intensive computations [22].49

In recent years, grid computing has been the subject50

of much research and has been used in commercial51

environments [9].52

A resource management system (RMS) is the most53

important component of grid computing; it has a sig-54

nificant role in controlling and supervising the usage of55

resources. The most important function of an RMS is56

to schedule incoming tasks, assigning them to available57

compatible resources [38]. However, the heterogeneous58

and dynamic state of resources in grid systems poses59

difficulties, particularly when combined with complex60

task scheduling. Deterministic algorithms don’t have61

the necessary efficiency to solve these scheduling prob-62

lems, so a considerable amount of research has been63

devoted to using heuristic algorithms such as genetic64

algorithms (GAs) [21], simulated annealing (SA) [17],65

particle swarm optimization (PSO) [15], ant colony66

optimization (ACO) [36], Queen-Bee Algorithm [26],67

tabu search (TS) [27], and various combinations of these68

[8, 12, 13, 28, 39] to produce better results in reason-69

able time. The heuristic ICA [6], proposed in 2007,70

was inspired by the sociopolitical evolution of impe-71

rial phenomena and has been used for solving many72

optimization problems in continuous space.73

This paper proposes a discrete version of ICA for74

solving the independent task scheduling problem in75

grid computing systems. The present paper converts76

ICA from a continuous state algorithm to a discrete77

state algorithm by changing the assimilation stage. The78

resulting algorithm is compared with SA and other79

heuristic algorithms and is shown to produce bet-80

ter results than these. This algorithm simultaneously81

considers makespan and completion time by using82

appropriate weights in the mean total cost function.83

The rest of the paper is organized as follows. Sec-84

tion 2 presents related artificial intelligent methods that85

have been used in grid scheduling. Section 3 defines86

the independent task scheduling problem as a system87

model. Section 4 describes the ICA. Section 5 presents88

our proposed method with discrete ICA, and Section 689

compares it with related methods using several combi-90

nations of parameters. Finally, Section 7 summarizes91

and concludes the paper.

2. Related work 92

A large number of heuristic algorithms have been 93

proposed for grid scheduling. Most of them try to 94

minimize the maximum completion time of tasks, or 95

makespan. Each task has its own deadline, and we try 96

to decrease the makespan in order to prevent tasks 97

from failing to execute because of their deadlines. 98

That is, decreasing the makespan results in the abil- 99

ity to execute more tasks in the network. It also helps 100

to provide efficient resource allocation and energy 101

utilization. 102

The hierarchic genetic strategy (HGS) algorithm was 103

proposed in [20] for scheduling independent tasks in a 104

grid system and is implemented in dynamic grid envi- 105

ronments in batch mode. This algorithm simultaneously 106

considers optimization of flow time and makespan. The 107

authors generate root nodes based on two other algo- 108

rithms: longest job to fastest resource and shortest job to 109

fastest resource (LJFR-SJFR) [3] and minimum com- 110

pletion time (MCT) [37], and they generate the rest of 111

the population stochastically. In LJFR-SJFR, initially, 112

the highest workload tasks are assigned to machines 113

that are available. Then the remaining unassigned tasks 114

are assigned to the fastest available machines. In MCT 115

[37], tasks are assigned to machines that will yield the 116

earliest completion time. 117

The rotary chaotic particle swarm optimization 118

(RCPSO) algorithm was proposed in [34] for solving 119

the workflow scheduling problem in grid systems. This 120

algorithm considers reliability as one of the quality of 121

service (QOS) parameters, in addition to time and cost. 122

It also incorporates a new rotary discrete rule (RD- 123

rule) method that helps the PSO algorithm optimize 124

workflow scheduling in a discrete space. PSO simulates 125

a swarm algorithm that orchestrates the movement of 126

groups of fish and birds. Like other evolutionary algo- 127

rithms, PSO stochastically initializes its population. 128

The population particles are collections of unknown 129

parameters whose optimal value must be determined. 130

Each particle thus provides a possible problem solu- 131

tion. The parameters can be defined in realcoding based 132

on the problem conditions. PSO searches the solution 133

environment in a way that tries to move particles toward 134

the best positions they have found, in hope of arriving 135

at a better processing time. Eventually, all particles will 136

converge to a single optimal point. RCPSO incorporates 137

cancellation of the history velocity, double perturba- 138

tions, and detecting the exact time and dimension of 139

the double perturbations in order to prevent premature 140

convergence and enhance the algorithm’s performance 141

https://www.researchgate.net/publication/222321622_The_anatomy_study_of_high_performance_task_scheduling_algorithm_for_Grid_Computing_System?el=1_x_8&enrichId=rgreq-32ab2f76e5e3ab1561482ffc0d87ce76-XXX&enrichSource=Y292ZXJQYWdlOzI1NjQ2NDU5MztBUzoxMTE5NjI1OTU3OTQ5NjJAMTQwMzcwNTM3MjExNQ==
https://www.researchgate.net/publication/220118952_Fuzzy_scheduling_with_swarm_intelligence-based_knowledge_acquisition_for_grid_computing?el=1_x_8&enrichId=rgreq-32ab2f76e5e3ab1561482ffc0d87ce76-XXX&enrichSource=Y292ZXJQYWdlOzI1NjQ2NDU5MztBUzoxMTE5NjI1OTU3OTQ5NjJAMTQwMzcwNTM3MjExNQ==


U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

Z. Pooranian et al. / Using imperialist competition algorithm 3

[34]. The drawback of RCPSO is that it is unable to142

optimize control of the chaotic system.143

The balanced ant colony optimization (BACO) algo-144

rithm was proposed in [11] for task scheduling in a145

grid environment. Ant colony algorithms imitate the146

behavior of ants, which have an outstanding ability to147

cooperate with one another for finding the best food148

resources and how to reach them. The BACO algorithm149

changes ACO to balance the entire system load and150

minimize the makespan for a set of tasks. The local and151

global functions of the pheromone have been changed152

to perform the load balancing.153

Fuzzy PSO was proposed in [23] to schedule tasks154

with the position and velocity representations for parti-155

cles based on fuzzy matrices instead of the real vectors156

used in conventional PSO. This approach dynami-157

cally provides an optimal schedule for task completion158

with minimal makespan while allocating resources for159

utilization.160

Use of the TS algorithm was proposed in [14] for161

solving the flowshop scheduling problem. Flowshop162

scheduling is defined as assigning sequences of jobs163

to a group of machines in the same order. TS attempts164

to diminish the makespan. Here the solution neigh-165

borhood presents various combinations of exchange166

mechanisms as successful search results for decreasing167

makespan.168

The GA-SA algorithm, a combined evolutionary169

algorithm, was proposed in [39] for solving the indepen-170

dent task scheduling problem in grid systems. The main171

purpose of this algorithm is to find a solution that min-172

imizes the total completion time. Since GAs search the173

problem space globally and are weak in local searches,174

the combination of a GA with the local SA search algo-175

rithm tries to remedy this weakness, thus exploiting the176

advantages of the two algorithms.177

An algorithm that combines a GA and TS for178

scheduling independent tasks in computational grids179

was proposed in [8]. The GA is implemented as the main180

algorithm and the TS procedure is called to improve181

population numbers.182

A PSO algorithm that simultaneously minimizes183

makespan and flowtime was proposed in [16]. There are184

two parameters for the fitness function, with one coef-185

ficient. The first issue in applying PSO for optimization186

is that we want to have a mapping between problem187

solutions and particles. In this paper, an m × n matrix188

is used, where m is the number of nodes (resources) and189

n is the number of tasks. The matrix elements are set to190

0 or 1. Let Xk be the position vector for the k-th particle.191

If Xk(i, j) = 1, this means that the j-th task executes on192

the i-th resource. Also, a star neighborhood topology 193

[18] is used for defining nbest, the best positions of all 194

particles in all previous steps (we could call this the 195

best global solution). A combination of PSO and ther- 196

mal simulation, HPSO, was proposed in [13], with SA 197

used to avoid falling into local optimums. 198

To date, the ICA has not been used for solving the 199

independent task scheduling problem in grid systems. 200

It is able to optimize similar and even higher than 201

other mentioned optimization algorithms in different 202

problems. In addition, it has adequate speed in find- 203

ing optimum solution (i.e., less execution time). The 204

ICA, which is discussed in detail in Section 4, is based 205

on stochastic populations that imitate human sociopo- 206

litical evolution. In this algorithm, several imperialists 207

together with their colonies try to find an optimal state 208

of the empire for a given optimization problem. ICA 209

has been used to solve various optimization problems, 210

including the design of proportional integral derivative 211

controllers (PID controllers) [5], transmission expan- 212

sion planning [2], feature selection [24], and solving 213

the traveling sales man problem [25]. 214

ICA has also recently been used to solve the flowshop 215

scheduling problem. In [7], ICA is used for flowshop 216

scheduling by considering the minimization of earliness 217

and using quadratic tardiness penalties. In [4], ICA is 218

used for solving the flexible flowshop scheduling prob- 219

lem with the goal of minimizing maximum completion 220

time by limiting waiting time. This paper considers 221

a flexible flowshop scheduling problem called flow- 222

shop with multiple processors. The algorithm consists 223

of multiple stages with each stage containing paral- 224

lel machines, and each job on each machine includes 225

a series of operations where each operation has a 226

specific setup time and processing time. In [32], the 227

hybrid imperialist competitive algorithm (HICA) and 228

stochastic imperialist competitive algorithm (SICA) are 229

proposed for no-wait two-stage flexible manufacturing 230

in flowshops. The HICA algorithm assigns the selected 231

task to the machine with the earliest available time, 232

while in SICA, the assignment is random. Finally, in 233

[33], ICA is used for bi-criteria assembly flowshop 234

scheduling. 235

3. System model 236

The effectiveness of a proposed algorithm for the 237

independent task scheduling problem studied in this 238

paper depends on minimizing makespan. Task schedul- 239

ing in a grid includes n tasks T = T1, T2 . . . , Tn 240
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Expected Time to

Complete (ETC)

R2

RmR1

T1 T2 Tn

Fig. 1. View of the scheduling problem.

that should be mapped by the broker to m available241

resources R = R1, R2, . . . , Rm in a way that minimizes242

makespan. This problem is illustrated in Fig. 1. In this243

figure, the completion time for each task Ti on each244

resource Rj is calculated dynamically in each step and245

is entered in a matrix ETC at index [i, j]. This matrix246

is available to the broker. Ready [j] is the time that247

resource Rj needs to complete its previous task. The248

maximum of the sums of these times is the makespan of249

a solution, as defined in equation (1). It is assumed that250

every task is executing on a resource and is not mapped251

to any other machine until its execution is stopped.252

Makespan = max
n∑

i=1

(ready[j] + ETC[i, j])253

J = 1, . . . , m (1)254

The running time of each task for each resource must
be calculated for the purpose of scheduling. If the pro-
cessing speed of resource Rj is PSj , then the processing
time for task Si can be calculated by equation (2):

Tij = Ci/PSj (2)

where Tij is the processing time for task Si by resource255

Rj and Ci is the computational complexity of the task256

Si [1]. The values obtained from Equation (2) are stored257

in the ETC matrix.258

4. The ICA259

In this section, we describe ICA in detail. Imperial-260

ism is the policy of expanding the power and influence261

of a country outside its known territory. A country can262

control another country by direct legislation or through263

indirect methods such as controlling raw materials and264

goods. Imperialism has been a pervasive phenomenon265

in shaping world history. Imperialism in its first stages266

is political–military influence exercised in other coun- 267

tries in order to use their political, human, and mineral 268

resources. Sometimes imperialism is practiced to pre- 269

vent any influence of competitor imperialist countries. 270

Imperialist countries engage in intensive competitions 271

to colonize the colonies of other imperialist countries. 272

This competition in turn results in the improvement 273

and expansion of imperialist countries from the polit- 274

ical, military, and economic points of view, because 275

countries have to expand in order to make competition 276

possible. Initially, imperialists only want to increase 277

their power by using the human and mineral resources 278

of their colonies, and it is not important whether their 279

colonies improve or not. But later, because of increased 280

international relations and growth of populations, impe- 281

rialists need some kind of public support in order to 282

continue their influence. To this end, imperialists begin 283

to develop and improve their colonies. Thus, colonies 284

see improvements in their economic, human, and social 285

areas because these are necessary for the imperialists. 286

The ICA proposed by Atashpaz [6] was inspired by 287

the mathematical modeling of imperialist competitions. 288

Figure 2 shows a flowchart for the algorithm. Like other 289

evolutionary algorithms, this algorithm begins with a 290

number of initial random populations, each of which 291

is called a country. Countries are possible solutions to 292

the problem at hand and are equivalent to chromosomes 293

in GA and particles in PSO. A number of the best ele- 294

ments of the population are selected as imperialists. 295

The remainder of the population is considered to be 296

comprised of colonies. 297

Figure 3 shows the initial empire formation. By 298

applying an assimilation policy in the direction of 299

various optimization axes, imperialists gain the favor 300

of their colonies. The total power of each empire is 301

modeled as the sum of the imperialist power and a per- 302

centage of the mean power of its colonies. After the 303

initial formation of empires, imperialistic competition 304

starts among them. Any empire that has no success in 305

the imperialistic competition with nothing to add to its 306

power is eliminated from the competition. So the sur- 307

vival of an empire depends on its power to assimilate 308

competitors’ colonies. As a result, the power of greater 309

empires is gradually increased in imperialistic compe- 310

titions and weaker empires will be eliminated. Empires 311

have to make improvements in their colonies in order 312

to increase their power. For this reason, colonies will 313

eventually become like empires from the point of view 314

of power, and we will see a kind of convergence. The 315

stopping condition of the algorithm is having a single 316

empire in the world.
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Fig. 2. ICA flowchart.

Fig. 3. Formation of the empire.

5. Discrete ICA for independent task317

scheduling318

The independent task scheduling problem includes319

n tasks and m machines, where each task must be pro-320

cessed by each of the machines in a way that minimizes321

makespan. The original version of ICA is defined with322

real values, for contiguous spaces. But the independent323

task scheduling problem is discrete. Therefore, a dis-324

crete version of ICA [31] is required. In this version,325

ICA is transformed from contiguous states to discrete326

states by changing the assimilation stage and the way327

the solution is represented.328

5.1. Generation of initial population329

The initial population of countries in the ICA is gen-330

erated randomly. Each country is a 1 × n array, where331

Fig. 4. An example solution for a problem with nine tasks running
on three resources.

n is the number of input tasks. The values in each coun- 332

try are resource numbers. Figure 4 shows an example 333

solution to the independent task scheduling problem. In 334

this example, nine tasks are considered for execution, 335

and tasks T1, T2, T6, and T9 are run on resource R3: 336

The cost of each country is calculated with the fitness
cost function in equation (3).

fitness (country) = makespan (country) (3)

According to the cost function, the lower a country’s 337

makespan is, the more appropriate is the solution it 338

represents for solving the scheduling problem. 339

At the outset, a number Ncountry of countries are pro-
duced, and a number Nimp of the best members of this
population (countries with the least cost function val-
ues) are selected as imperialist countries. The remaining
Ncol countries are colonies, each of which belongs to an
empire. The colonies are divided between the imperial-
ists proportionally to the imperialists’ power. To do this,
the normalized cost Ci of each imperialist i is computed
based on the cost of all imperialists, through equation
(4):

Ci = maxj(cj) − ci (4)

where ci is the cost of imperialist i and maxj (cj) is
the maximum cost of the imperialists. Imperialists with
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the highest costs (weaker imperialists) have lower nor-
malized costs. Using the normalized costs, the relative
normalized power Pi of each imperialist is calculated
using equation (5); these values are used to proportion-
ally divide the colonies among the imperialists.

pi =

∣∣∣∣∣∣∣∣∣∣

ci

Nimp∑
j=1

cj

∣∣∣∣∣∣∣∣∣∣

(5)

The number N ·Ci of initial colonials of an imperialist
i is then defined as in equation (6):

N ·Ci = round(Pi × Ncol) (6)

where round is a function that yields the closest integer340

to a decimal number. The initial number of colonies341

for each imperialist is randomly selected. Given the342

initial state of the imperialists, the imperialistic com-343

petition begins. The evolution process continues until344

the stopping condition is satisfied. It is obvious that in345

the division of colonies, more powerful imperialists will346

have more colonies.347

5.2. Colonies moving toward (Assimilation)348

Historically, the assimilation policy was developed349

with the purpose of moving the culture and social350

structure of colonies toward the culture of the central351

government. Depending on how a country is repre-352

sented for solving an optimization problem, the central353

government can apply an assimilation policy to try to354

make its colonies similar to it in various ways. This355

part of the colonization process in an optimization algo-356

rithm models colonies moving toward the imperialist357

country’s culture. Specifically, an operation is applied358

to make part of the colonies’ structures the same as the359

imperialist’s structure. This operation is shown in Fig. 5360

and is implemented as follows:361

1. First, some cells (approximately 40%)[2] of the362

Imperialist array are randomly selected (cells 1,363

4, 8, and 9 in the figure).364

Fig. 5. Modification that moves colonies toward imperialist.

2. The selected cells are directly copied into the 365

New-Colony array at the same indexes. 366

3. The remaining cells of the New-Colony array are 367

copied from the Colony array at the same indexes 368

(cells 2, 3, 5, 6, and 7 in the figure). 369

5.3. Revolution operation 370

To perform this operation, two cells are first ran- 371

domly selected in the colony and their values are 372

exchanged. This stage (random exchange or revolu- 373

tion operation) is repeated based on a percentage of 374

the total number of tasks; this percentage is indicated 375

by the %Revolution parameter. If the new colony is 376

better than the old colony, it replaces the old colony; 377

otherwise, this procedure is repeated. This operation is 378

illustrated in Fig. 6. 379

5.4. Position exchanges of colony and imperialist 380

While moving toward the imperialist country, some 381

colonies may reach a superior status compared to the 382

imperialist (with a cost function value two points less 383

than the imperialist’s cost function value). In this case, 384

the imperialist and the colony exchange their positions, 385

and the algorithm continues with the new imperialist 386

country applying the assimilation policy to its newly 387

acquired colonies. The colony and imperialist’s posi- 388

tion exchange is shown in Fig. 7. In this figure, the best 389

imperial colony that has a lower cost than the imperialist 390

Fig. 6. Example of one revolution operation for resolving task
scheduling.

Fig. 7. Exchanging the position of a colony and the imperialist.
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Fig. 8. The entire empire after position exchange.

is shaded. Fig. 8 shows the entire empire after the391

exchange.392

5.5. Total power calculation in an empire393

The power of an empire is the power of the imperialist394

country plus some percentage of the power of all its395

colonies. Thus, the total cost T ·Ci of the i-th empire is396

defined as in equation (7):397

T ·Ci = cost(imperialisti)398

+ ζ mean(cost(colonies of empirei)) (7)399

where ζ is a positive real number between 0 and 1. Using400

a small value for ζ leads to the total cost of an empire401

being equal to cost of its central government (imperialist402

country), while increasing ζ results in increasing the403

effect of colonies’ costs on the empire’s total cost.404

5.6. Imperialistic competition405

As noted earlier, each empire that fails to increase its
power will be eliminated in imperialistic competitions.
This elimination occurs gradually. Over time, power-
less empires lose their colonies (usually one colony
at a time), and more powerful empires take posses-
sion of these colonies and increase their own power.
In each iteration of the algorithm, one or more of the
most powerless colonies of an empire are selected, and
a competition for possession of these colonies takes
place among all empires. Possession of these colonies
won’t necessarily go to the most powerful empire, but
more powerful empires have greater chances of taking
possession. To model the competition among empires
for possession of these colonies, each empire’s normal-
ized total cost N ·T ·Ci is first calculated according to
equation (8), based on the empire’s total cost T ·Ci and
the maximum empire cost maxj(T ·Cj):

N · T · Ci = maxj(T · Cj)–T · Ci (8)

Empires with lower total costs will have higher nor-
malized total costs. Each empire’s probability Ppi of
taking possession (which is proportional to the empire’s
power) under the competition for colonies is then cal-
culated through equation (9):

Ppi =

∣∣∣∣∣∣∣∣∣∣

N.T.Ci

Nimp∑
j=1

N.T.Cj

∣∣∣∣∣∣∣∣∣∣

(9)

Given the probability of possession for each empire, a
mechanism such as the roulette wheel in GA is needed
so that in the competition for colonies, the probability
of a colony being assigned to an empire is proportional
to the empire’s power. But because the roulette wheel
has a high computational cost, a less costly method pro-
posed by Atashpaz [6] is used here. Because colonies
are randomly divided among empires, a 1 × Nimp vec-
tor P containing the empires’ probabilities of possession
is first defined as in equation (10):

P = [Pp1, Pp2, . . . , PpNimp] (10)

Then a vector R of the same size as P is filled with ran-
dom numbers with a uniform distribution in the range
[0, 1], as in equation (11):

R = [r1, r2, . . . , rNimp]

where r1, r2, . . . , rNimp ∼ U(0, 1)
(11)

A vector D is then formed as in equation (12):

D = P − R = [D1, D2, . . . , DNimp] =

[Pp1 − r1, Pp2 − r2, . . . , PpNimp − rNimp]
(12)

406

The colonies are given to the empire corresponding to 407

the index in vector D that contains the greatest value. 408

5.7. Eliminating powerless empires 409

As already mentioned, powerless empires are grad- 410

ually eliminated in the imperialistic competitions, and 411

more powerful empires are given possession of their 412

colonies. In the present algorithm, an empire is elimi- 413

nated when it loses all of its colonies and it then becomes 414

an object of competition among the remaining empires. 415
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5.8. Termination condition416

The convergence condition proposed in this paper is417

that the total number of iterations has completed or all418

but one of the empires has fallen. In either case, the419

imperialistic competition ends.420

6. Performance evaluation421

In this section, we stress that experimental structures422

are possible under the following circumstances.423

6.1. Experimental setup424

The two metrics used to evaluate the scheduling425

approaches are the makespan constraint and execution426

time. The former indicates whether the schedule pro-427

duced by the scheduling approach achieves the required428

time, while the latter indicates how long it takes to429

schedule the independent tasks on the test bed. Our QOS430

results are therefore evaluated based on these metrics.431

Here we simulate four algorithms (SA, GA, GSA[29],432

and GGA[30]) in addition to ICA for various states.433

We have used a sample configuration named GR [10]434

for our tested tasks. The features of resources are alike435

so that we could meaningfully compare the various436

scheduling algorithms. Each resource has one proces-437

sor. Table 1 shows this configuration for ten resources.438

Here, only ten resources are considered. But we used439

different resource configurations based on GR. The per-440

formance measurements used are mean makespan and441

average runtime for each algorithm. All of the algo-442

rithms were implemented in a Java environment on a443

2.66 dual core CPU with a 4-GB RAM. First, it was444

important to determine the values of some required445

parameters for this evaluation. The best parameter val-446

ues, determined by several tests, are listed in Table 2.447

Table 1
GR Resource configuration

Resource ID R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Processing 8 4 7 6 10 3 9 5 7 11
Speed (MIPS)

Table 2
Tuned values for the algorithms

Algorithm Parameter Value

ICA ζ 0.1
P-Revolution 0.3

GA P-Crossover 0.85
P-Mutation 0.02

We have made several assumptions for the grid 448

task and resource modeling, as follows. We considered 449

tasks that are independent and produced stochastically. 450

Each task has a certain length, measured in terms of 451

a million instructions (MI); these lengths vary and are 452

uniformly distributed (a range (Min . . . Max) is selected 453

for task/job lengths and then a stochastic number is 454

selected in this so that task lengths are uniformly dis- 455

tributed). For the most homogenous state, the range 456

of task lengths is (100000 . . . 110000) instructions. In 457

this paper, we considered task lengths as multiples of 458

1000MI for convenience. Therefore, we express this 459

range as (100 . . . 110). 460

Since the most important aspect of scheduling algo- 461

rithms is execution time on the resources, the, network 462

delay for handling files is not considered. Also, the tasks 463

we consider are completely computational; at the out- 464

set, they receive their required values from an input file 465

and at the end, they place the final results in an output 466

file. Thus, regardless of their interactions, only their 467

computational aspects are discussed. 468

We assume a similar structure for all resources in 469

the experiments, so that we can compare the sched- 470

ulers for similar parameters. All resources have a single 471

processor. Each resource has its own processing power 472

(execution rate in terms of a million instructions per 473

second, MIPS). With this basis, we have simulated our 474

proposed method and all the other algorithms and have 475

compared the results. These results are in some cases 476

close to one another, so we have used the student’s t- 477

test for sample pairs, which shows with high confidence 478

that the differences between the measurements in the 479

results are greater than a statistical error. We used a 480

standard queue (FIFO data structure) for each resource. 481

Whenever a request arrives; it is placed in the queue 482

of an appropriate resource based on its QOS. We con- 483

sider the deadline for each task, and whenever a request 484

(task) is assigned to a resource, it uses the resource 485

non-preemptively until it completes its execution. 486

6.2. Experimental results 487

The results of a simulation of the proposed method 488

on a Netbean 6.8 × 86 simulators are compared to the 489

results of other methods. We have used similar data 490

structures for all algorithms and we had no cache misses 491

for the algorithms. The difference between the algo- 492

rithms is only found in the processing they perform to 493

find an optimal way to execute tasks on the resources. 494

Tables 3 and 4 show the makespan and execution time 495

results. The values are the arithmetic average of three 496
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Table 3
Makespan evaluation

Iter. (pop, task, resource) SA GA GSA GGA ICA

100 (50,50,10) 124.32 81.81 80.99 82.42 80.97
(100,50,20) 97.63 50.94 48.5 49.73 47.46
(200,50,30) 69.97 35.05 34.33 36.45 34.05
(50,100,10) 293.22 162.16 158.67 164.88 156.58
(100,100,20) 155.53 90.71 87.24 90.75 86.6
(200,100,30) 115.97 66.72 V.L. 68.22 62.51
(50.200,10) 583.55 329.36 316.66 317.78 313.6
(100,200,20) 325.97 177.34 166.54 175.55 169.55
(200,200,30) 269.33 122.11 V.L.1 121.51 117.8

200 (50,50,10) 115.34 82.28 82.95 81.91 81.96
(100,50,20) 83.95 45.75 45.14 47.08 44.36
(200,50,30) 67.39 34.94 32 35.71 33.45
(50,100,10) 285.8 158.33 156.03 159.48 158.1
(100,100,20) 181.83 88.46 86.19 85.13 85.3
(200,100,30) 130.39 V.L. V.L. 62.93 64.7
(50.200,10) 656.32 311.97 314.03 320.34 310.35
(100,200,20) 275.75 168.17 162.69 170.17 172.94
(200,200,30) 246.5 V.L. V.L. V.L. 121.3

300 (50,50,10) 111.91 81.18 81.37 81.27 80.76
(100,50,20) 73.75 45.76 45.09 45.75 44.56
(200,50,30) 69.78 34.44 V.L. 34.16 34.18
(50,100,10) 234.72 157.98 157.31 158.56 157.25
(100,100,20) 169.86 86.08 83.14 84.43 86.56
(200,100,30) 128.37 60.28 V.L 59.23 62.12
(50.200,10) 566.16 313.21 310.19 313.5 309
(100,200,20) 307.25 166.98 166.28 163.38 167.16
(200,200,30) 256.22 V.L. V.L. V.L. 123.92

1Very Large (with respect to the grid environment, time played a crucial role). Here the makespan values have risen enormously and are not
suitable for the grid environment. Therefore, we consider them as Very Large, abbreviated as V.L. in the table.

recursive executions of each method using the afore-497

mentioned parameters.498

Table 3 shows the makespan for the SA, GA, GSA,499

GGA, and ICA. We can separate the tasks into three500

groups: (1) soft tasks, of which there are at most 50; (2)501

medium tasks, of which there are approximately 100;502

and (3) heavy tasks, of which there are more than 200.503

We tested with exactly 50, 100, and 200 tasks. We used504

three sizes for the population: 50, 100, and 200; we505

tested all methods for 100, 200, and 300 iterations; and506

we considered 10, 20, and 30 resources.507

Table 4 shows the execution times for the SA, GA,508

GSA, GGA, and ICA methods.509

Figure 9 demonstrates the various algorithms’510

makespan improvements for 100, 200, and 300 iter-511

ations. As shown, ICA has better results for most of512

the states, and the makespans it finds are less than513

those of the other algorithms under these conditions.514

For example, with a population of 200, 50 indepen-515

dent tasks, 30 resources, and 100 iterations (200, 50,516

30; iterations 100), our proposed method’s makespan517

is approximately 34.05 units, whereas SA’s makespan518

is almost 69.97 units and GSA’s is approximately 34.33519

units, the best makespan other than ICA’s. Hence, our 520

proposed method achieved better results than the others. 521

Figure 10 illustrates the state (50, 200, 10) makespans 522

for 100, 200, and 300 iterations of the algorithms. We 523

tested each of the various states and iterations several 524

times and normalized the results, to easily show the 525

differences. We omitted the SA algorithm from this fig- 526

ure because its makespan differed considerably from 527

the other methods for the different numbers of itera- 528

tions. ICA and GSA are the only two methods whose 529

makespans decrease in a continuously decreasing slope. 530

The decreasing slope is 310.19−316.66
3−1 = −3.235 for 531

GSA and 309−313.6
3−1 = −2.3 for ICA. 532

Figure 11 depicts the time consumed by these algo- 533

rithms for this state. ICA’s execution time is much less 534

than GSA’s and is close to 0. ICA took approximately 1 535

second to execute for the various numbers of iterations. 536

On the other hand, the other algorithms took more than 1 537

minute to find the best solution for scheduling 200 tasks 538

on 10 separate resources for a population of 50. In this 539

case, GSA was the worst algorithm, because its runtime 540

increases rapidly as the number of iterations increases; 541

hence, this is not a good algorithm for scheduling.
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Table 4
Execution time evaluation

Iter. (pop, task, resource) SA GA GSA GGA ICA

100 (50,50,10) 0 45.66 89.66 32.33 2
(100,50,20) 0.33 181.66 193 127 4.33
(200,50,30) 0 895.33 2240 553.33 10
(50,100,10) 0.33 90.33 157.33 58 2.66
(100,100,20) 0 391.66 340 253.66 6.66
(200,100,30) 0 1696.33 3330 1040.33 15.66
(50.200,10) 0.33 158 266.33 114.66 4.33
(100,200,20) 0.33 751 1402 508.33 12
(200,200,30) 0 3138.33 V.L 2051.66 25.33

200 (50,50,10) 0 81.66 123.66 62.33 2.66
(100,50,20) 0 471.66 538.33 278 4.33
(200,50,30) 0 1538.66 2166 1115.66 13
(50,100,10) 0.33 150.66 224 114.33 2.33
(100,100,20) 0.33 721.66 1021 519.33 9.33
(200,100,30) 0.33 V.L V.L 2100 16.66
(50.200,10) 0.33 298.33 431.66 223 4.66
(100,200,20) 0.33 1394.66 1987 1011.66 11.66
(200,200,30) 0.33 V.L. V.L. V.L. 24

300 (50,50,10) 0.33 149.66 185 93.33 1.66
(100,50,20) 0.33 713 811 408.66 5
(200,50,30) 0.33 2395.33 V.L 1726.33 11
(50,100,10) 0.33 251.66 345.33 174 3.66
(100,100,20) 0.33 1117.66 1527.33 174 8.33
(200,100,30) 0.33 4619 V.L 3217.33 16
(50.200,10) 0.66 449.66 662 325.66 4.66
(100,200,20) 0.33 2296 2988 1525.33 18.33
(200,200,30) 0.66 V.L. V.L. V.L. 27.33
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Fig. 9. Makespans for the different algorithms.

As shown in Table 5, as the population and resources542

increased, the makespan found by all of the algorithms543

except GSA decreased. For all populations, ICA is544

the best solution for scheduling because of its shorter 545

makespan compared to the others. We did not consider 546

SA while varying the population because SA has only 547



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

Z. Pooranian et al. / Using imperialist competition algorithm 11

Fig. 10. Makespans for the state (50, 200, 10) for 100, 200, and 300
iterations.

Fig. 11. Runtimes for the state (50, 200, 10) for 100, 200, and 300
iterations.

Table 5
Makespans for different populations and resources

No. of (Pop., Task, Res.) GA GSA GGA ICA
iterations

300 (50,50,10) 81.18 81.37 81.27 80.76
300 (100,50,20) 45.76 45.09 45.75 44.56
300 (200,50,30) 34.44 Very large 34.16 34.18

one population, so that population changes do not affect548

the makespan it finds. Figure 12 shows the runtimes for549

different populations with 300 iterations for 50 tasks.550

Figure 12 shows that ICA takes at most approx-551

imately 11 seconds to execute for a population of552

200, while GSA, GA, and GGA take more than 1300553

seconds (i.e., more than 20 minutes) to find the best554

solution for scheduling 50 independent tasks with 300555

iterations. Hence, these methods are less suitable for556

time-independent requests in grid computing. Also, the557

Fig. 12. Runtimes for 50 independent tasks with 300 iterations.

50-Tasks

550

450

350

250

150

50
sec SA GA GSA GGA ICA (0.1)

Population:50 Iterations:100 Resources:10
100-Tasks 200-Tasks

Fig. 13. Makespans for task variations with 100 iterations and 10
resources with a population of 50.

increase in execution time when the population reaches 558

four times its original size of 50 is approximately 11 559

times for ICA, more than 10000 times for GSA, more 560

than 18 times for GGA, and more than 16 times for 561

GA. Thus, ICA is the best method in terms of execu- 562

tion time for problems where population sizes increase 563

significantly. 564

Figure 13 shows the makespans for various tasks for 565

a population of 50, with 100 iterations, and 10 resources 566

for all of the algorithms. ICA finds a shorter makespan 567

for all three types of tasks (thin, medium, and heavy) 568

than the other methods do. When the number of tasks 569

increases from 50 to 200, the makespan found by SA 570

increases rapidly from just less than 150 units (124.32 571

units) to more than 550 units (583.55 units). Hence, SA 572

is not appropriate for heavy tasks. All of the algorithms 573

except SA are good for medium tasks and thin tasks 574

because they have approximately the same makespan. 575
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Table 6
Algorithm runtimes for 100 iterations, population of 50, and 10

resources (in seconds)

Tasks SA GA GSA GGA ICA

50 0 45.66 89.66 32.33 2
100 0.33 90.33 157.33 58 2.66
200 0.33 158 266.33 114.66 4.33

Table 6 shows that SA is faster than the other algo-576

rithms, but considering that its makespan is the worst577

(Fig. 13), we should select the second fastest algorithm.578

This is the ICA. When the number of tasks increases579

from 50 to 200, the runtime for ICA increases by 2.33,580

whereas for GSA it increases by 176.67 seconds, for581

GA it increases by 112.36 seconds and for GGA it582

increases by 82.33 seconds. Thus, ICA is the fastest583

of these algorithms.584

7. Conclusion585

Grid computing involves a collection of resources586

that are geographically distributed and that share appli-587

cations, data, and computational resources with one588

another. Computational grids have been proposed as589

a new computational model for solving large, com-590

plicated problems in various domains. Since resources591

are distributed in computational grids, they have very592

dynamic communication lines and computational beds.593

The conditions of the computational resources are594

highly variable, and communication lines have delays595

and are unreliable. Thus, resource management in com-596

putational grids should have the necessarily ability597

to adapt with the dynamic states of the environment.598

Task scheduling in computational grids should dis-599

tribute the workload among available resources in the600

most efficient way. Various models, methods, and algo-601

rithms have been proposed for task scheduling in grid602

environments.603

This paper proposes the use of ICA, an evolu-604

tionary optimization algorithm based on modeling605

the colonization process, for solving the independent606

task scheduling problem for grid systems. The perfor-607

mance of ICA was compared with SA, GA, GSA and608

GGA algorithms that have also been proposed for grid609

scheduling, and the simulations show that ICA finds a610

shorter makespan than the other algorithms and also has611

faster computations for finding the optimal solution. On612

the other hand, ICA compares to classical optimization613

methods has less convergence speed because it escapes614

from the local optimum points and leads to converge615

slower than classical optimizations. As a result, it will 616

be good we will join both these methods together to 617

resolve both sides’ problems in the future. 618
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