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Abstract—The future smart grid is expected to be an in-
terconnected network of small-scale and self-contained micro-
grids (MGs), in which renewable energy sources (RESs) play
significant role in generation level as well as attract special
attention to the aim at a friendly environmental society. In
this paper, optimal operation of distributed generations (DGs)
are analyzed probabilistically due to uncertainties of loads and
RESs. In addition, probability distribution function (PDF) is
used to describe the fluctuation model of input data. This paper
establishes smart networked Microgrids (MGs) based on NSGA-
II algorithm, including the lowest operating cost and the least
pollutants emission. In order to make a comparison, the problem
is converted to a single-objective function and then, solved by two
heuristic algorithms, namely particle swarm optimization (PSO)
and Imperialist competitive algorithm (ICA). Simulation results
support the capability of the proposed algorithm to minimize
jointly the operating power and pollution emission as compared
to the results obtained by using current heuristics.

Index Terms—Multi-microgrids (MMGs), small-scale energy
resources (SSERs), renewable energy sources (RESs), nondomi-
nated sorting genetic algorithm II (NSGA-II), uncertainties.

I. INTRODUCTION AND RELATED WORK

Global warming, an increase in carbon emissions, and the
growing world population and power demand have provoked
many counties to build new power infrastructures known as the
smart grid [1]. The major feature of the smart grid includes
more distributed power generations (especially from renewable
energy sources), smart charging/discharging of energy storage,
two-way communications between the utility company and
consumers for a better demand side management, and decen-
tralized operations of power grid in the form of microgrids
(MGs) [2]. It is essential to understand the impact of these new
features, and how to make optimal economic and technology
decisions on the planning and operation of the smart grid [3].
From the perspective of microgrid (MG) owners, obviously,
economic operation of the MG is important. Since MGs can
participate in power markets and also provide some ancillary

services, proper scheduling of the MG is essential from the
main grid point of view. Therefore, a suitable strategy should
be pursued for the MG operation [4]. A typical MG consists
of a wind turbine (WT), a photovoltaic (PV), an energy
storage system (ESS), a micro turbine (MT), a fuel cell (FC),
combined heat and power (CHP), and thermal/electric loads
[5]. The MG has two modes of the operations: grid-connected
mode and stand-alone mode. In grid-connected mode, the MG
is able to connect the main grid completely or partially as well
as buy/sell from/to the main grid. In this mode, MGs can also
provide ancillary services for a network. In stand-alone mode,
MG feeds power to the priority loads while there is no any
disturbance in the main grid. Economic operation and optimal
scheduling are challenging tasks in the case of MG energy
management. To address this problem, several researches have
done in literature. In paper [6], authors proposed a method
to optimize conflicting objectives such as total cost, CO2

emissions and energy losses for MGs. They used two-layered
algorithm to solve the problem such that the outer layer is
based on genetic algorithm and inner layer using mixed linear/
quadratic programming model.

The work in [3] proposed the framework to join investment
and operation optimization for a MG as a two-period stochastic
programming to minimize operating cost in second period
based on solving problem in terms of capacities of solar and
wind power generations and energy storage. The results are
based on realistic meteorological data. Also, they have shown
the impact of uncertainty in renewable energy by computing
prediction error. In [7], authors considered a multi-objective
stochastic algorithm to minimize cost and emission by consid-
ering uncertain variables such as the load demands, the market
prices, and powers output of PV/WT units. An improved multi-
objective teaching-learning-based optimization [8] is applied
to solve proposed problems. In order to solve a multi-objective
optimization (MOO) with conflicting objectives, like reducing



energy cost, power fluctuations of versatile resources, peak
loading, emissions and improvement in reliability of service,
reference [9] proposed a method such that each objective is
quantified valuation functions that can be specified for each
MG. Authors in [10] designed a fuzzy optimization theory to
change the MOO problem into a nonlinear single objective
optimum problem. Method in [11] is adopted to deal with the
problem of uncertainty nature of power generations of renew-
able energy sources (RESs), energy storage and load demand.
To cope this issue, stochastic variables computation module
is implemented for a MG. It used Monte Carlo simulation
hourly to generate various scenarios. In this work, a mixed-
integer linear programming is proposed to solve the stochastic
scheduling. To minimize each user’s electricity payment [12]
proposed an optimum real-time load management algorithm
by combining real-time pricing (RTP) with inclining block rate
(IBR) tariffs to better reflect the fluctuation of the wholesale
electricity prices. Moreover, they take into account the load
uncertainty unlike most other load management algorithms
that assume fix energy demand for residential. The work in
[13] addressed the energy consumption scheduling with the
uncertainty of PV output power by using the Sample Average
Approximation (SAA) technique [13].

A. Goal of this paper

Despite the intermittent loads behaviors and generated pow-
ers by wind turbines (WTs) and PVs, there exists several
deterministic methods to deal with MG operation problems.
Hence, in this paper, stochastic method takes into account to
solve MG operation problems. Moreover, all the input data
such as loads and generated powers by WTs and PVs are
described as PDF. We connected MG to each others and
Main Grid to build multi-microgrids (MMGs) in order to
supply/absorb energy either by MGs or Main Grid. Since,
the traditional techniques such as MILP do not cope well
with large scale problems, we exploit NSGA-II algorithm to
address this problem. In addition, NSGA-II implements to
yield the best expected Pareto optimal front. In details, we
present a further step with respect to these proposals by con-
sidering optimal power dispatch problem as a multi-objective
function and solved by NSGA-II algorithm. In addition, due
to presence of RESs such as WTs and PV systems as well
as intermittency in load demand side, the proposed problem
is analyzed from stochastic and probabilistic viewpoints. As
another important contribution of the paper, MMG is intro-
duced as future generation of typical microgrid. In MMG
environment, transaction of power among any microgrid plays
a crucial role in both creating balance between load generation
and providing economical-environmental profits to not only
consumers but also power producers. Finally, the NSGA-
II algorithm can properly handle the proposed complicated
problem in comparison with single-objective functions, which
are solved by PSO and ICA algorithms.

The rest of this paper is organized as follows. In Section II,
the problem is described briefly with relevant MG probabilistic
power resources modeling and presented the proposed NSGA-

inspired algorithm. In Section III, we evaluate and compare
the performance of proposed algorithm through simulations.
Finally, Section IV concludes the paper.

II. PROPOSED MODEL AND ALGORITHM

In this section, after a brief overview of the NSGA-II
method, we describe the exploited models for the RESs over
MGs, cost modeling of MG components and proposed method.

A. Preliminarily of NSGA-II

The Fast Elitist Nondominated Sorting Genetic Algorithm
for MOO, NSGA-II [14], is the modified version of NSGA
[15] which has a better sorting algorithm. As an usual in
evolutionary optimization, the algorithm starts with the pop-
ulation initialization (parent population). Then, the popula-
tions are sorted based on non-domination1 into each front
and Crowding distance2. Now, we have parent P0 with size
N and use binary tournament selection, recombination and
mutation operators to create offspring population Q0 of size
N . From the first generation onward, the procedure is different.
P0 and Q0 are combined to make individuals of the next
generation (Rt = Qt ∪P0) of size 2N . Then, to generate new
parent population for the next generation Pt+1, Rt is sorting
according to non-domination and add solutions to Pt+1 from
the first front till the size exceeds N . If by adding all the
solutions in the last accepted front the population size exceeds
N , then the last one are sorted in descending order based on
their crowding distance until to fill the size of N . Recombine
Pt+1 by Binary Tournament Selection, Recombination and
Mutation to produce new offspring Qt+1. Hence, the process
repeats until the termination condition is met.

B. System architecture

Fig.1 summarizes the system architecture. We considered
three MGs. They can be more according to smart distribution
grid sizes with the following components: energy resources
such as PV, WT, MT, FC and CHP. Each MG is connected to
other MGs and Main Grid in order to sell/buy from/to other
MGs or Main Grid. Each MG can share its data including
the amount of generated energy by resources, load demand
with other MGs via the main management unit. We define the
generation power through the SSERs and load as a PDF in
order to model the fluctuation.

C. Probabilistic modeling of load/WT/PV

Certainly, the load as the most obvious uncertain variable
plays a crucial role in power system operation. The variation
of the load in distribution feeder contains deterministic and
stochastic components. The daily and weekly variations in the
demand mainly depend on the behavioral patterns of different
energy consumers. The normal distribution is widely used for

1An individual is said to dominate, if its objective functions of it is no
worse than the other and at least in one of its objective functions it is better
than the other.

2Crowding distance is compared only if the rank for both individuals are
the same.



Fig. 1: Network structure with three MGs.

load distribution [16]. The PDF for the normal distribution of
load power has been following:

f(Pl,MG) =
1

σ
√
2π
exp

(
− (Pi − µ)2

2σ2

)
, (1)

The power outputs of RERs depend on the availability of
the primary resources such as wind speed, solar irradiation
and etc. The generated power by the wind turbine depends
on the wind speed. Wind speed varies every minute, hour,
day and season of the year, which highlights the importance
of a probability model. The Weibull distribution is used to
represent the distribution for the wind speed v for long term
planning purposes. In weather forecasting to describe wind
speed distributions, as the natural distribution often matches
the Weibull shape3. Thus, The PDF of Weibull is defined as
following:

fv(v) =

{
β
α
× ( v

α
)β−1 × exp( v

α
)β v ≥ 0

0 otherwise
(2)

Since the simulated wind speed was generated using (2), the
real power generation PG,WT (v) by WT can be obtained as
follow:

PG,WT (v) =


0 0 ≤ v ≤ vci or v ≥ v∞
Pr,WT

v2−v2ci
v2r−v2ci

vci ≤ v ≤ vr
Pr,WT vr ≤ v ≤ vco

(3)

Maximum value of generated power by each WT is considered
200 kW . The generated power by a PV module varies accord-
ing to the solar radiation on the earths surface, which mainly
depends on the installation site and the weather conditions. In
this paper, irradiation is modeled by Beta distribution function.
The PV modules are tested at standard test condition (STC).
The output power of the module can be calculated as follow:

PPV (R) =


Pr,PV

(
R2

RSTDRc

)
0 ≤ R ≤ Rc

Pr,PV
(

R
RSTD

)
Rc ≤ R ≤ RSTD

Pr,PV RSTD ≤ R

(4)

3http://www.reuk.co.uk/Wind-Speed-Distribution-Weibull.htm

In this paper, the rated power of each PV is considered 150
kW .

D. Cost modeling

In this paper, the cost includes of the cost of power
generation, power transaction, operation and maintenance and
pollutant emission costs. The proposed objective function is
based on mentioned costs. The cost of power generation
is increased with increasing primary energy. The cost of
consumed energy by WTs and PVs is zero. In other SSERs
such as fuel cells (FCs), micro turbines (MTs) and CHPs,
there is linear relation between energy consumption and fuel
cost. Therefore, the relation between the generation cost and
the generated power are described for units (i.e., FC, MT and
CHP) as bellow:

Cg,unit = αα × Pg,unit, (5)

In above formula, the value of Cg for WTs and PVs is zero.
The total power generation in each MG is sum of the generated
powers by available units in same MG. Although, the Cg−Pg

relation is linear for dispatchable units, but the zero values
for WTs and PVs makes eq.(5) nonlinear for a MG. Indeed,
with this condition the cost function is nonlinear. Another cost
of units which is related to their generated power, operation
and maintenance (O&M) cost. This cost with a coefficient
(KO&M ) for each unit can be described as bellow:

CO&M,unit = KO&M,unit × Pg,unit, (6)

The transaction cost are considered in MGs. In presented
structure for MG, all MGs are connected to main grid and
exchange power with each-other. Whilst, one of the important
ideas of the paper is the exchange of power between MGs. In
other words, in addition to sharing power with main grid, each
MG can supply its power shortage from other MGs through
available power lines. So, each MG makes contact with main
grid and other MGs to supply its local load. These relations
between MGs and external grid contain transaction costs for
MGs. The SSERs of MGs after covering its local load, it has
surplus power that should be consumed. Based on existing
conditions, MG can sell this surplus power to other MGs or
external grid, otherwise, it should buy power, if it is unable to
provide sufficient power to its loads. In this paper, the priority
in selling/purchasing power is firstly by MGs, then with the
main grid. Indeed, we want to decrease the effect of main grid
or even remove main grid in some case studies. Hence, in
some conditions, all MGs operate in island mode and they are
unlinked from external grid. In order to explain mathematically
the transaction cost, related formulation to purchase and sold
costs of each MG is represented in:

Cbuy,MG = cMG × Pbuy,MG, (7)

Csell,MG = dMG × Psell,MG, (8)

where cMG and dMG are the cost of purchased an sold power
coefficients, respectively. The cost of power transaction of each
MG in the network is described as follow:

Ctrans,MG = Cbuy,MG − Csell,MG, (9)



Since, for a MG it is not reasonable to purchase and sell
energy on the market at the same time or sample, we have
the following constraints to purchased and sold powers:{

if Pg,MG − Pl,MG > 0⇒ Pbuy,MG = 0, Psell,MG > 0,

if Pg,MG − Pl,MG < 0⇒ Pbuy,MG > 0, Psell,MG = 0,
(10)

Each MG emits some pollutants into air. This pollution is
achieved from generated power by units of MGs that consists
NOx, SO2 and CO2. The pollution emission cost CE,unit for
each unit can be described as follows. Pollution coefficient for
each pollutant γ have been described in [16].

CE,unit =

3∑
j=1

γj × (ρunit,j × Pg,unit), (11)

E. Multi-objective function

The first objective is related to minimize the operation cost
of whole MGs FPG(s), which consists of power generation,
interchangeable power and O&M costs.

FPG(s) =

9∑
unit=1

[Cg,unit(s) + CO&M,unit(s)]+

3∑
MG=1

Ctrans,MG(s),

(12)

The second objective is minimizing the total amount of
pollution. Electricity suppliers have to generate high amount
of power to ensure supply-demand balance in any MGs so
that contribute highly to CO2, NOx and SO2 emissions and
production of air pollutants. Therefore, the second objective
is to minimize the emission amount. It is presented in:

FPE(s) =

9∑
unit=1

ME,unit(s), (13)

F. Objective constraints

In order to best control on the optimal power dispatch
problem, there are some important conditions in cost function.
The main equal constraint of the proposed problem is supply-
demand balance. In this condition, generated power in each
MG must provide sufficient power electricity to its local
loads considering network losses and transaction power. This
condition is applied to all MGs as bellow:

Pg,MG(s) = Pl,MG(s) + Ptrans,MG(s) + Ploss,MG(s), (14)

where Ploss,MG(s) is calculated using power flows coefficients
[17] and Ptrans,MG , Pbuy,MG − Psell,MG. The generated
power of each unit Pg,unit(s) must be within its lower and
upper operating limits. It may mathematically formulated by
eq.(15):

Pg,Min(s) < Pg,unit(s) < Pg,Max(s),∀ unit = 1, . . . , 9, (15)

Also, each MG can buy/sell power from/to other MGs and
main grid to an extent. The unequal constraints for purchased
and sold powers are as follow:

Pbuy,Min(s) < Pbuy,MG(s) < Pbuy,Max(s),∀MG = 1, 2, 3,
(16)

Psell,Min(s) < Psell,MG(s) < Psell,Max(s),∀MG = 1, 2, 3,
(17)

In inequality conditions, minimum and maximum values of
each constraint can change based on available conditions. Note
that, these values are adjusted by users.

III. PERFORMANCE EVALUATION

We have evaluated the performance of the proposed by using
MATLAB platform under Microsoft Windows 8 x64 on Intel
Core i5 by comparing it with methods such as ICA [16], and
PSO [17]. We evaluate the dispatch of power problem among
loads of MGs considering pollutant effects over the structured
network in Fig.1.

A. Test setup

In order to feed the optimization solution, 500 samples is
used for every input data in given interval. Moreover, the
characteristic of the generation units and emission factors of
pollution emissions (i.e., PV, CHP, MT, FC, WT) are listed in
Tables I and II, respectively.

B. Results

1) Pareto in NSGA-II: In order to evaluate the optimization
solution using NSGA-II, we need to demonstrate the state of
the two objectives Pareto related to each-other. Indeed, Fig.2
shows the Pareto front of NSGA-II for total emission amount
(TEA) in (kg/h) and total operation cost (TOC) in ($/h).
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Fig. 2: Pareto front of NSGA-II for the optimization problem
eqs.(12) and (13): TOC: total operation cost; TEA: total emission
amount.

2) TOC and TEA on MGs: In this scenario, the total
operation cost and emission amount of three considered MGs
are shown in Figs.3a-3c and Figs.3d-3f based on normal PDF,
respectively. We conclude that the PDFs of TOC and TEA are
normal distributions. This is the thing that we expected from
the shape of load power in eq.(1).

3) Performance of the NSGA-II-based method: As we
know, each MG emits pollutant into air. The pollution sub-
stances can be NOx, SO2 and CO2. In this test scenario, the
cumulative distribution function (CDF) of total emission and
cost mass of pollutions related to the MG3 is demonstrated
in Figs.4a and 4b. Moreover, in Fig.4c, we aim at testing
the performance of the proposed method by focusing on the
generated powers of the engaged MGs of Fig.1.



TABLE I: Default values of the charactristics of generation units.

MG number MG1 MG2 MG3

Unit type PV CHP WT WT MT FC PV CHP FC

Minimum (kW ) 0 50 0 0 50 30 0 50 30
Maximum (kW ) 150 450 200 200 450 200 150 450 200
O&M ($/kWh) 0.1095 0.00587 0.1095 0.1095 0.00587 0.00419 0.1095 0.00587 0.00419
Installation ($/kW ) 3176.9 1772.3 1906.2 1906.2 1588.5 4447.7 3176.9 1772.3 4447.7

TABLE II: Default values of the emission factors of pollution emissions.

Pollutant ($/kg) ρCHP , (kg/kWh) ρMT , (kg/kWh) ρFC , (kg/kWh) ρPV , (kg/kWh) ρWT , (kg/kWh)

NOx 10.0714 0.00010 0.00003 0.00044 0 0
SO2 2.2747 0.000007 0.000006 0.000008 0 0
CO2 0.0336 0.001370 0.001078 0.001596 0 0
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Fig. 3: Figs. 3a-3c: TOC in ($/h); Figs. 3d-3f: TEA in (kg/h), for the MGs; TOC: total operation cost, TEA: total emission amount.
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Fig. 4: Figs.4a-4b: CDF of TEA and TOC of MG3 and Fig.4c: generated powers of MGs under the scenario III-A; TOC: total
operation cost, TEA: total emission amount.

4) Performance Comparisons: In the second test set of
scenarios, we test the NSGA-II-based method performances
under various settings and compare the attained results against
of ICA [16] and PSO [17] methods. Indeed, we focused on the
performance of the NSGA-II-based method in terms of power
and cost types. The results of the average (mean) and the stan-
dard deviation (SD) of MGs’ power/cost types (generation,
purchased and selling components of the optimization problem
in eq. (12)) are presented in Tables III and IV, respectively.
We may draw a conclusion from these tables that the average
generation cost/power of NSGA-II in all MGs are lower than

ICA and PSO due to using Pareto front characteristic in order
to find optimum power and cost altogether.

In the next simulation, we demonstrate the emission amount
and cost for ICA, PSO, and NSGA-II as is reported in Table V.
We conclude that the NSGA-II-based method could decrease
amount of emission as well as cost for MG3 compared with
ICA and PSO.

In the last simulation, we obtain the optimal solution of
different techniques and evaluate the resulting total operation
cost (TOC), total emission amount (TEA) and implementation
execution time takes to run the methods under the setting of



TABLE III: Statistics of MGs’ power in (kW ) with three differ-
ent methods in three MGs; Pwrs: Powers type, Gnr: Generation,
Pur.:Purchased.

Pwrs MGs ICA [16] PSO [17] NSGA-II
Mean SD Mean SD Mean SD

Gnr.
MG1 473.24 63.76 476.75 67.98 475.52 66.9
MG2 547.85 66.09 555.31 67.20 545.97 66.9
MG3 586.17 63.51 573.83 62.98 572.01 60.7

Pur.
MG1 120.97 142.06 116.50 140.38 118.29 145.0
MG2 183.49 189.67 176.41 191.42 183.62 195.9
MG3 140.15 173.54 148.27 179.58 146.69 181.2

Sold
MG1 57.79 99.28 56.84 101.89 57.39 100.5
MG2 47.30 101.60 47.67 97.40 45.55 97.2
MG3 64.72 113.67 60.50 110.16 57.11 105.7

TABLE IV: Statistics of MGs’ cost with three different methods in
three MGs; Gnr: Generation, Purch.:Purchased.

Costs MGs ICA [16] PSO [17] NSGA-II
Mean SD Mean SD Mean SD

Gnr.
MG1 34.22 7.10 34.95 7.14 34.85 7.38
MG2 116.52 12.89 117.81 13.04 115.94 12.71
MG3 63.96 9.45 62.40 9.10 62.18 9.01

Purch.
MG1 23.46 27.72 22.53 27.22 22.94 28.23
MG2 34.81 36.33 33.70 36.77 35.10 37.74
MG3 27.25 33.83 28.83 35.04 28.48 35.24

Sold
MG1 10.21 17.72 10.19 18.46 10.17 17.73
MG2 8.52 18.41 8.60 17.68 8.16 17.51
MG3 11.54 21.03 11.03 20.27 10.48 19.59

TABLE V: Statistics of MGs’ emission with three different methods.

Emission type MGs ICA [16] PSO [17] NSGA-II
Mean SD Mean SD Mean SD

Amount (kg)
MG1 0.23 0.04 0.23 0.04 0.23 0.04
MG2 0.40 0.05 0.41 0.06 0.40 0.05
MG3 0.31 0.04 0.30 0.04 0.30 0.04

Cost ($/h)
MG1 0.50 0.08 0.50 0.08 0.50 0.08
MG2 0.67 0.10 0.69 0.11 0.67 0.11
MG3 0.52 0.08 0.51 0.08 0.51 0.08

scenario III-A. The obtained results are reported in Table VI.
We drive two conclusions from this table. First, The average
of TOC and TEA of the NSGA-II method outperforms others
solutions due to minimizing jointly TOC and TEA using
Pareto front. Second, the standard deviation of the proposed
method is lower than ICA and PSO which is indicated that
the proposed method would be good alternative than current
methods.

TABLE VI: Optimal solution between ICA, PSO and The proposed
method; TOC: total operation cost, TEA: total emission amount.

Solutions TOC ($/h) TEA (kg/h) CPU Time (s)Mean SD Mean SD

ICA [16] 411.50 86.15 1.31 0.16 85
PSO [17] 410.84 84.32 1.30 0.15 93
NSGA-II 410.67 84.16 1.28 0.14 106

IV. CONCLUSIONS

In this paper, we exploit the NSGA-II algorithm in order
to jointly minimize power cost which consists of generated

power, purchased power, sold power, O&M cost, and emission
for the smart distribution grids with interconnected cooperation
of MGs. Based on the probabilistic behavior of the inputs
include load and renewable energy that are defined in PDF.
Efficiency of the proposed model is investigated by comparing
the results of NSGA-II algorithm with the other heuristic
algorithms: ICA and PSO. Numerical results illustrated that
NSGA-II could find better solution between objectives, power
and emission cost when it is compared with the ICA and the
PSO methods.
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