
An efficient and distributed file search in unstructured
peer-to-peer networks

Mohammad Shojafar & Jemal H. Abawajy &

Zia Delkhah & Ali Ahmadi & Zahra Pooranian &

Ajith Abraham

Received: 21 March 2013 /Accepted: 9 September 2013 /Published online: 29 September 2013
Springer Science+Business Media New York 2013

Abstract Peer-to-peer (P2P) networks are gaining increased
attention from both the scientific community and the larger
Internet user community. Data retrieval algorithms lie at the
center of P2P networks, and this paper addresses the problem
of efficiently searching for files in unstructured P2P systems.
We propose an Improved Adaptive Probabilistic Search
(IAPS) algorithm that is fully distributed and bandwidth effi-
cient. IAPS uses ant-colony optimization and takes file types
into consideration in order to search for file container nodes
with a high probability of success. We have performed exten-
sive simulations to study the performance of IAPS, and we
compare it with the RandomWalk and Adaptive Probabilistic
Search algorithms. Our experimental results show that IAPS

achieves high success rates, high response rates, and signifi-
cant message reduction.

Keywords Unstructured peer-to-peer . Adaptive probabilistic
search . Ant colony . Success rate . Information retrieval

1 Introduction

A peer-to-peer (P2P) network is a distributed system in which
computing nodes employ distributed resources to perform a
critical function in a decentralized manner. Nodes in a P2P
network normally play equal roles and are therefore called
peers . Since P2P systems are capable of searching and com-
municating across the globe, they have become phenomenally
popular in recent years [1]. Examples of P2P applications are
distributed file-sharing systems, event notification services,
and chat services [2–5].

P2P networks can generally be classified, based on the
control over where data are located and the network topology,
as structured or unstructured [6]. In an unstructured P2P
network such as Gnutella http://www.gnutella.com, peers are
typically connected to a random set of neighbors. There are no
rules that strictly define where data is stored and which nodes
are neighbors. Moreover, as there is no need to maintain
particular network architecture, unstructured P2P systems
are very efficient when nodes join or leave the network.

In contrast, structured P2P networks have well-defined
neighbor links and can be further classified as loosely structured
or highly structured. In highly structured P2P networks such as
the network in Chord [7], the neighbors of nodes, the network
architecture, and the locations for storing data are precisely
specified. In loosely structured P2P networks such as
Freenet [8] and Symphony [9], the overlay structure and data
locations are not precisely determined. In Freenet [8], both the
overlay topology and the data location are determined

Peer-to-Peer Netw. Appl. (2015) 8:120–136
DOI 10.1007/s12083-013-0236-0

M. Shojafar (*)
Department of Information Engineering, Electronics and
Telecommunication (DIET), “Sapienza” University of Rome,
Via Eudossiana 18, 00184 Rome, Italy
e-mail: Shojafar@diet.uniroma1.it

M. Shojafar
e-mail: m.shojafar@yahoo.com

J. H. Abawajy
Senior IEEE Members, School of Information Technology, Deakin
University, Waurn Ponds, Australia

Z. Delkhah :A. Ahmadi
Department of Electrical and Computer Engineering, Qazvin Islamic
Azad University, Qazvin, Iran

Z. Pooranian
Department of Computer Engineering, Islamic Azad University,
Andimeshk Branch, Andimeshk, Iran

A. Abraham
Machine Intelligence Research Labs (MIR Labs), Auburn,WA, USA

A. Abraham
IT4Innovations - Center of excellence, VSB – Technical University
of Ostrava, Ostrava – Poruba, Czech Republic

http://www.gnutella.com

based on hints, and the network topology eventually evolves
into some intended structure. In Symphony, the overlay
topology is determined probabilistically but data locations
are precisely defined.

The principal requirement in any peer-to-peer network is
efficient searching for desired resources such as data or files.
Heuristic and meta-heuristic methods have proven to be effi-
cient for solving many hard network search problems. They are
also demonstrating their usefulness in the P2P network domain,
especially for unstructured P2P networks. Ant Colony
Optimization (ACO) [10] is inspired by observations of the
foraging behavior of real ant colonies. While moving from food
sources to the nest and vice versa, ants deposit a substance
called pheromone on the ground, forming a pheromone trail.
When choosing their way, ants can smell pheromone and tend to
choose paths marked by strongly probable pheromone concen-
trations. While an isolated ant moves practically at random, an
ant encountering a previously laid trail can detect it and decide
to follow it with high probability, thus reinforcing the trail with
its own pheromone. The collective behavior that emerges is a
form of autocatalytic process where the more the ants follow a
trail, the more attractive that trail becomes for following. The
process is thus characterized by a positive feedback loop, where
the probability with which an ant chooses a path increases with
the number of ants that have previously chosen the same path.
This method is one of the approaches that scholars have applied
to unstructured P2P networks in the last decade, including
AntNet [11], Anthill [12], AntSearch [13], SemAnt [14],
ACO-based Search [15], and APS [16]. In the next section,
the last three approaches are discussed in more detail.

In this paper, we present a novel Improved Adaptive
Probabilistic Search (IAPS) algorithm for locating files in un-
structured P2P networks. We focus on unstructured P2P net-
works because most popular P2P applications operate on un-
structured networks. The highly transient node populations and
ad hoc organization of unstructured P2P networks make it
much more challenging to locate desired resources in these
networks than in structured P2P networks. Conventional search
methods for unstructured P2P networks use flooding and its
variations or various types of indices that are quite expensive to
maintain, may not scale well [17], and can incur heavy over-
head [18]. In contrast, IAPS considers the file’s type and a score
based on previous searches for this file type to minimize the
search space and, as a result, the search overhead. We
performed extensive simulations to study the performance of
IAPS, and we compared its performance with the popular
Random Walk and Adaptive Probabilistic Search (APS) algo-
rithms. Our experimental results show that IAPS achieves a
better trade-off between search cost and performance than both
Random Walk and APS for a wide range of P2P scenarios.

The remainder of this paper is organized as follows.
Section 2 describes related work. Section 3 provides the
system model of our works. Section 4 presents the details of

IAPS, our proposed search method. Section 5 analyzes the
performance of IAPS and compares it with the RandomWalk
and APS algorithms. Finally, Section 6 presents our conclu-
sions and future research directions.

2 Related work

Many search algorithms for unstructured P2P networks have
been proposed in recent years. The algorithms can be classi-
fied as deterministic or probabilistic. In a deterministic ap-
proach [19, 20], query forwarding is deterministic, while in a
probabilistic approach [21, 22], query forwarding is probabi-
listic, random, or based on resource ranking. Searching
schemes in unstructured P2P systems can also be categorized
as regular-grained or coarse-grained. In a regular-grained ap-
proach, all nodes participate in query forwarding. In a coarse-
grained scheme, query forwarding is performed by only a
subset of the nodes in the network. Existing search methods
can also be classified into blind searches and informed
searches [16, 22]. In blind searches, nodes do not store infor-
mation about data locations, while in informed searches;
nodes store some metadata that facilitates the search.

Flooding-based searching is the most commonly used meth-
od to locate specific data items http://www.gnutella.com.
Flooding involves a breadth-first search (BFS) of the overlay
network graph, with the querying node contacting nodes that
are reachable within a specified time-to-live (TTL) number of
hops. To perform this search, the querying node sends a query
request to all of its neighbors. When a neighbor receives the
query, it returns the result if it has the requested data. Otherwise,
it forwards the query request to all of its neighbors except the
querying node. This procedure continues until the depth limit
time-to-live (TTL) is reached. Although flooding is a simple
algorithm, it generates a large number of messages (many are
duplicate messages) and does not scale well. Several ap-
proaches have been proposed to address this problem. These
include variations on a depth-first search (DFS) that, for exam-
ple, use routing indices [23], an attenuated bloom filter [19],
and Successful Paths in Unstructured Networks or SPUN [24].
They also include BFS variations such as iterative deepening
[20], a random k-walk [6], a modified randomBFS [25], a two-
level random k-walk [21], a directed BFS [20], an intelligent
search [25], a search based on local indices [20], the Adaptive
Probabilistic Search [22], and a search based on dominating
sets [26]. In the iterative deepening and local index searches,
queries are forwarded to all neighbors of the forwarding node,
while in all other schemes, queries are forwarded only to a
subset of those neighbors.

The Adaptive Randomized Search Protocol (ARSP) [27] is
an extension of the Quorum-Based Protocol for Searching
Objects in Peer-to-Peer Networks that minimizes the protocol’s
communication cost by disseminating objects to nodes based

Peer-to-Peer Netw. Appl. (2015) 8:120–136 121

http://www.gnutella.com

on popularity indices. Although the protocol automatically
adapts to the dynamics of a network environment, it does not
consider file types for performing the search. An entity retrieval
model with a compressed index data structure is presented in
[28]. A super-peer-based coordinated service provision frame-
work (SCSP), consisting of a super-peer-based labor market
(S-labor market) model, a recruiting protocol based on a
weighting mechanism, and an optimal dispatch algorithm, is
proposed in [29]. Although this framework has good scalabil-
ity and robustness, it takes a long time for the algorithm to
adapt to the dynamic environment of unstructured P2P sys-
tems. An approach that minimizes data processing time by
choosing a set of peers based on their computation and com-
munication capabilities is discussed in [30].

SPUN [24] is a controlled flooding algorithm in which
each node probabilistically forwards queries to its neighbors.
Each peer keeps a local index of its neighbors’ relative prob-
abilities of successfully locating data. Searching is based on
the querying peer’s simultaneous deployment of k walkers
that are selected probabilistically, based on the querying peer’s
local index. Each walker travels along its own path in the
network and returns a hit or a miss message to the originator
along the reverse query path. A peer that finds the requested
object in its local storage returns a hit and the query is
terminated. Otherwise, the query is forwarded to the next
neighbor. If a file is not found within the TTL period, the peer
returns a miss. Each peer includes its profile in any message
(query, hit, miss) that it sends, and each peer along the query
path, excluding the one farthest from the requestor, sends its
relative probability of success back to its previous neighbor in
the query path. Each intermediate peer along the reverse query
path uses this information to update its local index.

An alternative approach to flooding is the Random Walk
algorithm. In the standard Random Walk algorithm, the query-
ing node forwards the query message to one randomly selected
neighbor. This neighbor randomly chooses one of its neighbors
and forwards the query message to that neighbor. This proce-
dure continues until the data is found. The standard Random
Walk algorithm can greatly reduce the message overhead but
incurs a longer search delay. The k -walker Random Walk
algorithm [6] attempts to reduce the search delay by having
the querying node forward k copies of the query message to k
randomly selected neighbors. Each querymessage takes its own
random walk. Each walker periodically communicates with the
querying node to decide whether that walker should terminate.
Nodes can also use soft states to forward different walkers for
the same query to different neighbors. On the average, the total
number of nodes reached by k randomwalkers inH hops is the
same as the number of nodes reached by one walker in kH
hops, so the routing delay is expected to be k times smaller
when k walkers are used rather than a single walker.

In [15], the authors have presented a new ACO-based
search in AntNet [11], a method that uses two tables (i.e.,

local information and routing tables). This method is similar to
our approach, which searches the local database before trans-
mitting a query request to available neighbors. Both methods
use Internet Control Message Protocol (ICMP) packets to
avoid network congestion or oversubscription, as well as
avoiding requested services not being available and a hosts,
router, and neighbor nodes being unreachable, and also to
relay query messages. Both methods use forward and back-
ward ants with similar details, preventing loops and cycles to
compel the forward ant to come back to the nest after finding
an available destination peer for the keyword (i.e., our method
uses the entire TTL deadline for the forward ant and indicates
the TTL in searching queries, but with different policies). The
pheromone trail updating policy in our method is completely
different from the policy in [15], but both update the trail by
the backward ant for each query request. Our model is based
onGentulla, while the basic model of [15] comes fromAntNet
[11]. The method in [15] does not control bandwidth and
latency, nor does our approach.

In another work [14], the authors presented the SemAnt
method for distributed query routing by the ACO meta-
heuristic algorithm in fixed and ad hoc networks with churn
peers. Both our method and the SemAnt method use reputa-
tion learning, manage document repositories, and lead their
data to the other peers in searching queries, and both perform
keyword-based searches on their meta-data. Bothmethods use
independent forward and backward ants to reward the nodes
that take part in query occurrences, and both methods use
forward and backward ants to search the query request from
visited peers and intermediate peers. The method of scoring in
SemAnt is based on regularly updating pheromone and evap-
orating pheromone and is different from our proposedmethod.
Our method uses a number scoring system for the intermediate
and destination peers, so that it can perform a better search for
file types for similar queries in the next phase, because we pay
attention to the types of files requested by queries. A score
corresponds to each type, to help new queries for different
types search more easily than SemAnt, which searches each
node based on the current table’s probability for nodes after
evaporation. We note that we also use an evaporation rule, but
not as a probability: our reduction is based on intervals, as
discussed in the next section. Neither method is able to con-
sider the impact of bandwidth and latency in the selection
phase for finding the best visited paths. Both methods use the
concept of random leaf selection. The authors in [14] modeled

Table 1 Query table status indexed for each node

File type File format Number of copies files Score of files

Video *.3gp 500 80

Audio *.mp3 300 200

Document *.doc 200 1300

122 Peer-to-Peer Netw. Appl. (2015) 8:120–136

A

D

E
B

C

H

G

F

State (a)

File No Score
*.mp3 4 2

File No Score
*.3gp 1 10
*.mp3 2 8
*.doc 1 2

File No Score
*.mp3 2 8

File No Score
*.mp3 1 8

File No Score
*.mp3 3 4

File No Score
*.mp3 2 11

File No Score
*.mp3 1 3

File No Score
*.mp3 2 6

File No Score
*.mp3 4 6

Extended Index

Total Walkers: 2
Current Walk: 0

A

D

E
B

C

H

G

F

State (b)

File No Score
*.mp3 4 2

File No Score
*.3gp 1 10
*.mp3 2 8
*.doc 1 2

File No Score
*.mp3 2 8

File No Score
*.mp3 1 8

File No Score
*.mp3 3 4

File No Score
*.mp3 2 11

File No Score
*.mp3 1 3

File No Score
*.mp3 2 6

File No Score
*.mp3 4 6

Extended Index

Total Walkers: 2
Current Walk: 1

A

D

E
B

C

H

G

F

State (c)

File No Score
*.mp3 4 2

File No Score
*.3gp 1 10
*.mp3 2 8
*.doc 1 2

File No Score
*.mp3 2 8

File No Score
*.mp3 1 8

File No Score
*.mp3 3 4

File No Score
*.mp3 2 11

File No Score
*.mp3 1 3

File No Score
*.mp3 2 6

File No Score
*.mp3 4 6

Extended Index

Total Walkers: 2
Current Walk: 2

G

Fig. 1 General scoring procedure in IAPS

Peer-to-Peer Netw. Appl. (2015) 8:120–136 123

A

D

E
B

C

H

G

F

State (d)

File No Score
*.mp3 4 2

File No Score
*.3gp 1 10
*.mp3 2 8
*.doc 1 2

File No Score
*.mp3 2 8

File No Score
*.mp3 1 8

File No Score
*.mp3 3 4

File No Score
*.mp3 2 11

File No Score
*.mp3 1 3

File No Score
*.mp3 2 6

File No Score
*.mp3 4 6

Extended Index

Total Walkers: 2
Current Walk: 2

Req. file has
been found

A

D

E
B

C

H

G

F

State (e)

File No Score
*.mp3 4 2

File No Score
*.3gp 1 10
*.mp3 2 8
*.doc 1 2

File No Score
*.mp3 2 8

File No Score
*.mp3 1 8+2

File No Score
*.mp3 3 4-1

File No Score
*.mp3 2 11-1

File No Score
*.mp3 1 3-1

File No Score
*.mp3 2 6+1

File No Score
*.mp3 4 6

Extended Index

Total Walkers: 2
Current Walk: 2

Reward and
Punishment

A

D

E
B

C

H

G

F

State (f)

File No Score
*.mp3 4 2

File No Score
*.3gp 1 10
*.mp3 2 8
*.doc 1 2

File No Score
*.mp3 2 8

File No Score
*.mp3 1 10

File No Score
*.mp3 3 3

File No Score
*.mp3 2 10

File No Score
*.mp3 1 2

File No Score
*.mp3 2 7

File No Score
*.mp3 4 6

Extended Index

Total Walkers: 2
Current Walk: 2

Send Back
The file to

node G

Fig. 1 (continued)

124 Peer-to-Peer Netw. Appl. (2015) 8:120–136

their content for each peer based on ACM computing classi-
fication systems [31], but we use Gnutella network features
[32]. The results we achieved are more realistic as compared
to the approach in [14].

The Adaptive Probabilistic Search (APS) algorithm [16]
utilizes feedback from previous searches to make future
searches more efficient. In APS, each node maintains a local
index with one entry for each object it has requested or for
which it has forwarded a neighbor’s request. The value of the
entry reflects the relative probability of this node’s neighbor
being chosen as the next hop in a future request for the object.
The search uses k walkers and probabilistic forwarding. The
requester chooses k out of its N neighboring nodes (while the
query is still being sent to neighbors) to forward the request to.
Each of these neighbor nodes compares the query with its local
repository, and if a hit occurs, the walker terminates successful-
ly. If a miss occurs, the query is forwarded to one of the node’s
neighbors. This procedure continues until all k walkers have
terminated with either a success or a failure. Thus, while the
requesting node forwards the query to k neighbors, all of the
other nodes forward it to only one. In the forwarding process, a
node does not choose its next-hop neighbor(s) randomly, but
rather based on the probabilities in its local index. At each
forwarding step, nodes append their identifiers to the search
message and maintain a soft state about the search they have
processed. If two walkers from the same request cross paths
(i.e., a node receives a duplicate message due to a cycle), the
second walker is assumed to have terminated with a failure and
the duplicate message is discarded. Efficient (delay tolerant and
intolerant) data sharing mechanisms in P2P networks and cur-
rent video coding trends are elaborated in detail in [33], where it
is shown that APS has the drawback of depending on the
number of walkers and the broadband width. Our proposed
IAPS algorithm eliminates these disadvantages. In addition,
IAPS has a high success rate, less overhead (because duplicate
messages are eliminated), and a high hit per query rate.

3 System model

In the Improved Adaptive Probabilistic Search (IAPS) algo-
rithm, each peer maintains information about files and shares
this information with its single-hop neighbors. Table 1 (the
Query Table) shows the information that a node maintains
about each file. Recall that, in the search algorithm for a P2P
network, the destination node is unknown and the contents of
search packets are variable, so the content of a query, which is
expressed by a keyword and syntax, should be considered in the
design of the routing or query table. The Query Table has four
columns representing the file type, the file format, the number
of copies of the file, and the scores of the file. Initially, all tables’
entries are commenced with the same amount of file-types files.
Before a node leaves the network, it must distribute all of the

entries in its index table to its neighbors in a uniform and
balanced style. This ensures that the attenuated bloom filters
(data structures that reside at each node in the system) [19] in its
index table are still available while the node is offline. When a
node rejoins the network, it asks its neighbors to distribute some
entries in their index tables to fill in its own index table. A query
(request) Q consists of one or more keywords k1,…,kn, which
are connected by the boolean operator OR or AND. At startup,
all table entries for each node (peer) are initialized with the
same small value for each file type’s scores.

IAPS maintains a score for each file based on the results of
previous searches for the file; the score is an indication of how
many times the file has been referenced. For example, the

Table 2 File-type probability table τ for each node

File type File format File scores Probability

Video *.3gp 80 80/(80+200+1200)

Audio *.mp3 200 200/(80+200+1200)

Document *.doc 1200 1200/(80+200+1200)

Fig. 2 Flowchart for the IAPS neighbor selection phase

Peer-to-Peer Netw. Appl. (2015) 8:120–136 125

score in Table 1 for a file with a .mp3 extension indicates that
there have been 200 references to that file. The file format
score maintained in each node is increased or decreased based
on the search request and the placement of the node along the
path traveled by the file request. The type of request depends
on the awareness of the data structure by the user and on the
user expertise. We use requests like [34]. If a node has the
requested file, the node increases its score for the file by two
points (we have selected this amount to show how the pher-
omone of the forward ant can calculate the nodes that will
cause the query to reach the destination node), and all other
nodes along the route to the destination node, excepting the
node that originated the request, increase their file score by
one point. If there is more than one path from the destination
node to the requesting node, the path with fewer hops is
selected, and the nodes in the other paths are rewarded the
same points as the nodes of the selected path. However, if the
requested file was not found or the route comes back to the
requesting node, one point is deducted from the score of each
of the nodes that assessed the request.

Figure 1 illustrates how the score for the file is computed.
In this figure, we consider two walkers, and node G is the
originating node for a request for a .mp3 file that is hosted by
node A. The figure also displays next to each node its index
table with its current state (state a).

Node G sends a request message to all of its neighbors
(broadcasting request message [34]) (state b). We search the
index tables of the unvisited neighbors of each node simulta-
neously. Then nodes B, D, and H search their databases
concurrently. If a node finds the requested file, it sends a
response to node G. Otherwise, the node sends the request to
its unvisited neighbors. For example, node D is not visited
because of the path D→G (state c).

In state (d), node B sends a request message to all of its
neighbors that have not already received the request. Node A
searches its database and finds the file. Now, the score phase to
update the score for all nodes engaged in the search begins
(state e). The nodes along the path A→B→G , except the
requesting node, are rewarded with additional points, while all
other nodes that engaged in the search process but were not

A

G

H

B

E

D

F

C
File No Score
*.doc 3 12

File No Score
*.doc 2 3

File No Score
*.doc 4 16

File No Score
*.doc 1 -2

File No Score
*.doc 5 6

File No Score
*.doc 2 8

File No Score
*.doc 3 1

a

A

G

H

B

E

D

F

C
File No Score
*.doc 3 12

File No Score
*.doc 2 3

File No Score
*.doc 4 16

File No Score
*.doc 1 -2

File No Score
*.doc 5 6

File No Score
*.doc 2 8

File No Score
*.doc 3 1

Node Score

D 16

H 12

F 8

G 6

B 3

E 1

C -2

Walker:4

b

Fig. 3 The IAPS selection phase

126 Peer-to-Peer Netw. Appl. (2015) 8:120–136

successful in locating the file in their database have one point
deducted. Thus, node A is rewarded twice compared to the other
nodes that receive additional points. Finally, node A sends the
requested file back to node G along the selected path (state f).

In this example, we used two walkers. If, instead, we con-
sider three walkers, the nodes that are rewarded will change.
This is because node C will send a request to node A and
receive its response. The reward for node A will then be four
points, while the rewards for each of nodes B, C, and D will be
one point. Also, we will have two alternative paths (A→B→G
and A→C→D→G) for sending the response back to node G.
We do not consider shared file types in this paper, because there
is no supplementary data about shared file types among nodes.
In the following section, we discuss IAPS in greater detail.

4 Improved adaptive probabilistic search (IAPS)

Our proposed Improved Adaptive Probabilistic Search (IAPS)
method consists of four phases: (1) the search phase, (2) the
neighbor selection phase, (3) the scoring phase, and (4) the
flow control phase.

4.1 Search phase

The search actions are as follows. There are two states in
which a search can be conducted for a given file:

& First Search : If this is the first request for the file, our
method is different from the APS method, because it
emphasizes the specific file type when randomly selecting
the nodes to which the query will be sent.

& Next Search : If this is not the first request for the file, its
path has been indexed in the index table.

If a node receives a request message for a file, it searches in
its local database (this is similar to the local information table in
[15]) for the requested file. If the file exists, the node sends a
response message by generating a forward ant at starting time
Tstart to the querying node, along the reverse of the path that the
file request traveled by generating the backward ant. The node
considers the TTL parameter Tfinal and also the number of
walkers, as in [21], in searching the network, starting by
searching its available neighbors. Tfinal and the number of
walkers serve to prevent ants from infinitely running forward
in the network. Our method uses ICMP packets to avoid
network congestion and prevent the possibility that a request-
ed service is not available or that a host or neighbor peers
cannot be reached, so that only available peers are visited in
our query search. In the sequel, if the file does not exist, the
node forwards the request to its neighbors by its forward ant.
We use a common policy for preventing the forward ant from
engaging in a cycle or loop when searching: If a forward ant
detects a cycle occurring (i.e., it is about to search the nest
peers), the forward ant is forced to return to an already visited
node, the cycle’s nodes are popped from the ant’s stack, all
memory about them is destroyed, and the forward ant con-
tinues searching. But if the cycle lasts longer than the Tfinal
value of the forward ant, it is destroyed as in [10, 15].

4.2 Neighbor selection phase

Neighbor selection for request forwarding is based on infor-
mation in the nodes’ index tables (illustrated in Section 3),

A

G

H

B

E

D

F

C

Initial state for network

File No Score
*.3gp 1 1
*.mp3 2 2
*.doc 1 1

File No Score
*.3gp 1 1
*.mp3 0 0
*.doc 1 1

File No Score
*.3gp 4 4
*.mp3 1 1
*.doc 3 3

File No Score
*.3gp 0 0
*.mp3 2 2
*.doc 1 1

File No Score
*.3gp 2 2
*.mp3 4 4
*.doc 1 1

File No Score
*.3gp 3 3
*.mp3 0 0
*.doc 0 0

File No Score
*.3gp 0 0
*.mp3 0 0
*.doc 2 2

File No Score
*.3gp 1 1
*.mp3 0 0
*.doc 0 0

Fig. 4 Initial score distribution
for nodes

Peer-to-Peer Netw. Appl. (2015) 8:120–136 127

such as the number of successful requests (file scores), file
types, and the file-type probability table τ . The file-type
probability table τ stores the probability rate for each peer, a

value between 0 and 1, based on the file scores that it has.
Table 2 shows the probability information that a node main-
tains about each file type.

A

D

E
B

C

H

G

F

a

File No Score
*.mp3 4 2

File No Score
*.mp3 2 -2

File No Score
*.mp3 1

9+2

File No Score
*.mp3 3 3

File No Score
*.mp3 2 10

File No Score
*.mp3 1 2

File No Score
*.mp3 2

7+1

File No Score

*.mp3 4 6

Total Walkers: 2

File Found

Reward

Fig. 6 Rewards and punishments in IAPS

A

D

E
B

C

H

G

F

a

File No Score
*.mp3 4 2

File No Score
*.mp3 2 -2

File No Score
*.mp3 1 9

File No Score
*.mp3 3 3

File No Score
*.mp3 2 10

File No Score
*.mp3 1 2

File No Score
*.mp3 2 7

File No Score

*.mp3 4 6

Total Walkers: 2

A

D

E
B

C

H

G

F

b

File No Score
*.mp3 4 2

File No Score
*.mp3 2 -2

File No Score
*.mp3 1 9

File No Score
*.mp3 3 3

File No Score
*.mp3 2 10

File No Score
*.mp3 1 2

File No Score
*.mp3 2 7

File No Score

*.mp3 4 6

Total Walkers: 2

Fig. 5 Selecting routes in IAPS

128 Peer-to-Peer Netw. Appl. (2015) 8:120–136

The querying node selects the neighbors that have the
highest scores for the requested file type. Figure 2 describes
the IAPS selection phase in a flowchart.

For example, if we want to find “mike.mp3,”we identify the
nodes that have high scores for files with .mp3 extensions.
When a request is issued, we sort the nodes in descending order

A

D

E
B

C

H

G

F

b1

File No Score
*.mp3 4 2

File No Score
*.mp3 2 -2

File No Score
*.mp3 1 11

File No Score
*.mp3 3 3

File No Score
*.mp3 2

10-1

File No Score
*.mp3 1 2

File No Score
*.mp3 2 8

File No Score

*.mp3 4 6

Total Walkers: 2

File Found

Punishment

A

D

E
B

C

H

G

F

b2

File No Score
*.mp3 4 2

File No Score
*.mp3 2 -2

File No Score
*.mp3 1 11

File No Score
*.mp3 3

3-1

File No Score
*.mp3 2

10-1

File No Score
*.mp3 1 2

File No Score
*.mp3 2 8

File No Score

*.mp3 4 6

Total Walkers: 2

File Found

Punishment

A

D

E
B

C

H

G

F

b3

File No Score
*.mp3 4 2

File No Score
*.mp3 2 -2

File No Score
*.mp3 1 11

File No Score
*.mp3 3

3-1

File No Score
*.mp3 2

10-1

File No Score
*.mp3 1

2-1

File No Score
*.mp3 2 8

File No Score

*.mp3 4 6

Total Walkers: 2

File Found

Punishment

Fig. 6 (continued)

Peer-to-Peer Netw. Appl. (2015) 8:120–136 129

of the scores, using the Counting Sort algorithm [35]. We then
select k nodes with the highest scores from the sorted neighbor
list and send the request message to these nodes. This process is
repeated for the unvisited and available neighbors of those
nodes, and so on, until the requested file is found or all the
walkers cross paths and the corresponding file is not found.

Figure 3 illustrates the process for five walkers. In Fig. 3a,
node Awants to find “a.doc” file in a P2P network. First Node
A searches its database. If it doesn’t find the file, it will initiate
a search through its neighbors (Fig. 3a). It selects the four
nodes whose indexes have the highest scores for files with
.doc extensions and sends them a request (Fig. 3b). In this
case, node A sends a request to nodes D, F, G, and H (Fig. 3b).

4.3 Scoring phase

At the outset, each node is given a score of one point for each
file of a given type that it contains in is database and zero
points for file types that are absent. Figure 4 illustrates the
initial scores for nodes before searching commences. Nodes F,
G, and H have scores of zero for the file types that are not
contained in their database.

When a node in P2P network sends a file request to its
neighbors, the neighbors search their databases for the re-
quested file. If a neighbor node finds the file in its database,
it sends a reply message to the requesting node by generating a
backward ant and increases its score for the file type by three
points. Otherwise, the node sends a request for the file to k
neighbors in Tfinal, where k is the number of walkers. If one of
the neighbors finds the file in its database (index tables), the
neighbor node will be rewarded with two points for the file
type and updates Tables 1 and 2. In addition, the scores of the
nodes along the path from the requesting node and the
responding node are increased by one point excluding the
requesting node (i.e., the forward ant has a stack into which
it pushes visited peers; Reward). If the neighbor node does not
have the requested file in its database, it will similarly send a
request message to its unvisited neighbors by its forward ant.
In the worst-case situation, if none of the nodes in the network
have the requested file or the TTL (Tfinal) of all of the walkers
reaches zero, the scores of all visited notes are decreased by
one point (i.e., the backward ant performs a pop and punishes
that visited peer; Punishment). On the other hand, if the search
is successful, then the scores of all visited nodes that are not on
the successful search path are also decreased by one point.

The scoring process is depicted below, in Figs. 5 and 6, for
two walkers. In both figures, Node G requests “a.mp3” file that
is has failed to find in its database. In Fig. 5a, Node G sorts its
neighbors and selects two of these: nodes B and D. It sends
request message to these nodes. Based on Fig. 5b, in the next
walk both node B and nodeD select node C (because of its high
score) and send C a file request. Node C sends the request to
nodes F and A (i.e. Node C does not send the request message

to Node D, because, it saves the previous request message
already came from Node D in its database, so, no need to send
request to Node D), and node A has the file. Figure 6 shows the
steps involved in rewarding and deducting score points. All the
nodes participating in the path connecting A to G are rewarded
according to the policies we have presented (Fig. 6a). In con-
trast, all visited nodes (light red color nodes) except the nodes
that were rewarded are punished under the scoring policy
discussed above (Fig. 6b). Thus, a reward fortifies the location
of the file extension in the network and enhances the probability
of selecting that node for the next search (Fig. 6a). We use an
ant colony to simulate the scoring phase in our programming,
with a pheromone parameter that rewards a node based on the
number of times per minute a file type is found on that node.
Pheromone parameter is updated according to the information
gathered by the forward ant by altering the routing table of each
visited node similar to [36]. If a file type is requested more than
10 times per minute and is repeatedly found on one node, then
the node is rewardedwith three points the 11th time the file type
is found there, and every node along the path from that node to
the requesting node is rewarded two points (except of the
requesting node-here node A) (Fig. 6a). For example (Figs. 5
and 6), if a file is searched for more than 10 times in a minute
with the same results, node A is rewarded three points so that its
new score will be 11+3=14 points, and other nodes along the
successful route, such as node B in this example, are rewarded
two points, so that node B’s new score will be 7+2=9 (i.e. this
figure is not shown here). Figure 6b-1 to b-3 show ants share
the negative data. It gives negative points to the nodes that were
participated as intermediate nodes to find the corresponding file
until reach to the requested node.

Each peer applies the evaporation rule shown in (1) in a
predefined interval Te for each link to a neighbor peer, where
the amount of evaporating pheromone is controlled by the
parameter ρ 2 [0,1]:

τi ¼ 1−ρð Þτi; ð1Þ

Table 3 Simulation parameters and their default values

Simulation parameters Default value

Number of nodes 1000

P2P model Pure

Graph model Random

Average node degree (AND) 8

Walkers deployed (k) 15

TTL 6

Number of objects (files) 150

Replication distribution Zipf(a =0 .82)

Query distribution Zipf(a =0 .9)

Number of Req. nodes 1000

Number of queries per request node 3162

130 Peer-to-Peer Netw. Appl. (2015) 8:120–136

where τ i is the file-type probability table for node i .

4.4 Flow control phase

The flow control phase is used to control and limit the number
of messages received at each time step based on the nodes’
abilities and capabilities. We use a least-recently-used (LRU)
scheme to control the flow; this involves throwing away some
unimportant messages by ICMP controlling packets and thus
increasing the network’s capacity to serve important new
messages in the near future.

5 Performance evaluation

In this section, we compare IAPS with the standard APS and
Random Walk algorithms. We use random graph models to
simulate the network. Before each simulation, object replica-
tion and query distributions and query tables are set. We used
PeerSim software http://peersim.sourceforge.net/ for the
experiment. PeerSim is written in JAVA and runs on the
Linux OS. It is composed of two simulation engines, a
simplified (cycle-based) one and event driven one. The

engines are supported by many simple, extendable, and
pluggable components, with a flexible configuration
mechanism http://peersim.sourceforge.net/. It is suitable for
evaluating P2P protocols based on discrete event simulation.
PeerSim includes the following parameters:

& Node : this specifies the peer nodes that can be geograph-
ically identified;

& CDprotocol : this specifies the protocol used in the
simulation;

& Linkable :this specifies the connectivity between nodes;
& Control : this specifies various simulation parameters.

To evaluate a protocol’s performance, this algorithm is
designed to work in a specific environment. In our simulation,
we set the number of peers to 1000. The nodes’ end-to-end
delay averages 200 msec [37]. Each node generates a search
request for the location of a random key with an average search
time of 3000 msec, and each node contacts an average of 8
nodes. The maximum number of walkers is 15 (we have tested
all the methods mentioned for 1 to 15 walkers), the TTL (Tfinal)
is set to 6, and control parameter ρ is 0.1. Moreover, various
parameters are altered in the simulations so that they can be
evaluated. We considered the following metrics in the
simulation:

& Success rate : the ratio of the number of hits to the total
number of requests;

& Hit per query : the average number of discovered objects
per query;

& Response Distribution : the response distribution with the
number of walker steps for requests.

& Duplicate Message : the number of duplicate messages
generated while searching for the file.

Table 3 summarizes our simulation parameters and their
default values. We used 150 objects in most simulations for
simplicity and speed; increasing that number does not affect

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Su
cc

es
s

ra
te

s
(%

)

K

Random Walk

APS

I-APS

Fig. 8 Success rates

40

45

50

55

60

65

70

75

80

85

90

95

100

10 20 30 40 50 60 70 80 90 100

110

120

130

140

150

APS

IAPS

Request Per Job for K=10

Su
cc

es
s

 R
at

e
(%

)

Fig. 7 Success rates for K=10, TTL=6, Object=150

Peer-to-Peer Netw. Appl. (2015) 8:120–136 131

http://peersim.sourceforge.net/
http://peersim.sourceforge.net/

the quality of the results. Our query and replication strategies
generally follow the observations in [32], but we preferred a
less skewed distribution, where the objects in the 90th per-
centile of the rankings constitute approximately 30 % of the
total number of stored objects and receive about 30 % of the
total requests. For the 150 objects in our model this was a
more realistic choice and resulted in requests for all of the 150
objects. We used three file extensions: .3GP, .mp3, and .doc,
with file size generally less than 5MB. For each file extension,
we included 1000 files distributed in a uniformmanner among
the nodes in the network.

5.1 Success rates

Figure 7 displays the number of requests affects accuracy
between APS and IAPS. We have tested our works in k=10
and TTL=6, we varied the number of requests per object
using a uniform distribution for both storage and requests on
the default graph. As we can see, accuracy improves with only
a small increase in requests, even though only about 150
copies of each object exist. The average success rate for
APS is 78.5 % but IAPS is approximately 81 %.

Figure 8 presents the success rates for the three algorithms as
a function of the number of walkers deployed (k). When k<4,
the success rate for IAPS is lower than for APS, mainly because
IAPS gathers information from all nodes in this case. However,
as K increases, the success rate for IAPS surpasses of the
success rate for APS. In Fig. 8, we can see that the success rate
of IAPS increases with k and reaches close to 97 %,
outperforming both APS and the Random Walk methods.

As the numbers of requests increase, APS’s success rate
also increases relative to the Random Walk method. IAPS is
smarter than the other methods because it acquires informa-
tion based on previous requests and uses this information to
transmit requests to the nodes that have a higher probability of
successfully responding to the requests. As a result, IAPS’s
success rate is better than those of the other two methods.

5.2 Average number of discovered objects (Hit per query)

Figure 9 shows the average number of discovered objects per
query. APS puts the walkers to much better use, achieving
greater than 65 % walker accuracy (the ratio of successful
walkers to all walkers deployed), and it discovers approximate-
ly four times more objects than the RandomWalk method. This
is an immediate side effect of its high success rate and very few
walker collisions. Since walkers are directed to (possibly) dif-
ferent parts of the network where different copies of an object
may exist, the successful walker percentage increases. This is
extremely important for currently popular P2P applications,
giving the user a much broader choice for downloading files.
IAPS produces marginally better results than APS.

5.3 Response distribution (Distance rate per steps)

Figure 10 compares the response distribution with the
number of walker steps for requests. The random walk

Fig. 10 Distance based on walker steps

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H
it

 p
er

 Q
ue

ry

K

Random Walk

APS

IAPS

Fig. 9 Hit per query

132 Peer-to-Peer Netw. Appl. (2015) 8:120–136

has an approximately smooth and straight line that shows
discovered goals between one and six steps, equal to the
TTL value. APS increases the discovered goals to half of
the TTL. In contrast, IAPS finds the goals in shorter
distances than both of the other methods. As a result,
the number of requests that need to be sent for a discov-
ery is less in IAPS. Both APS and IAPS are useful only
for up to three steps, after which their efficiency quickly
decreases, with APS’s efficiency decreasing more rapidly
than IAPS’s.

5.4 Duplicate messages

Figure 11 displays the experimental results for the duplicate
message metric. We can see a vast reduction of duplicate
messages in IAPS, which reduces wasted bandwidth.
Duplicate messages are considered to be failure states for
our walkers, and hence the learning process makes adjust-
ments in order to minimize walker collisions. The APS and
IAPS methods produce several messages in the update pro-
cessing, in contrast with the Random Walk method. Most
(70 %) of the request messages in the Random Walk method
are failed messages, and a few of them continue their walk
until their TTL reaches zero. This imposes a large traffic load
on the network. In APS, there are approximately 4 distinct

messages for each 15 that are circulating, while IAPS has a
better strategy for update processing. APS consistently out-
performs the Random Walk, producing one to two orders of
magnitude fewer duplicate messages. This is also important
because it increases each peer’s useful processing time. As we
can see in Fig. 11, IAPS produces close to 18 % fewer
duplicate messages than APS.

At last, In Table 4 we conclude our results on pure P2P
networks. We compare IAPS with Random Walks, and APS
over three different topologies: The default one (Zipf),
Uniform graph, and a 5000-node random graph with average
degree 8. We monitor the success rate, the average number of
hits, and duplicate messages per query. Apart from the default
setup, we also test the algorithms using the uniform distribu-
tion for both requests and storage. This may be a more suitable
model for other kinds of P2P applications, for example shar-
ing of sensor data between wireless ad-hoc peers. The repli-
cation ratio is set to 1 % and each object is requested 30 times.
We clearly notice that IAPS can greatly benefit from such a
setup, delivering over 94 % in success rate and discovering 4
times more results than Random Walks. Our simulations
on the 5000-node random graph justify our prediction
that the graph size cannot influence the performance of
IAPS and APS. The results were a little worse from the
ones in the original graph (Zipf); because the quality of

Table 4 Results for three network graphs: Zipf, Uniform, and 5000-node random graph

Methods IAPS APS Random Walks

Succ.
Rate (%)

Average Hits Dupl. Msg Succ.
Rate (%)

Average Hits Dupl. Msg Succ.
Rate (%)

Average Hits Dupl. Msg

Zipf 93 6.8 0.06 88 6.1 0.04 55.5 1.35 1.6

Uniform 94.8 7.15 0.07 90 6.8 0.06 40 0.6 2.3

5000-node random graph 88.3 5.8 0.01 85 5.1 0.01 58 1.3 1.4

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
up

lic
at

e
M

es
sa

ge
s

K

Random walk

APS

IAPS

Fig. 11 Duplicate messages

Peer-to-Peer Netw. Appl. (2015) 8:120–136 133

the new graph was worse (many more disconnected
components were present). Still, our method is over
30 % more accurate and delivers 4 times as many results as
the random method. In all these simulations, we notice
that IAPS produces almost the same number of messages with
Random Walks, wasting at most 4 extra messages per
search.

6 Conclusions and future research directions

In an unstructured P2P network such as Gnutella, there
is no rule that strictly defines where data are stored. To
search for a specific item, flooding and its variations are
frequently used. In this paper, we have proposed a new
approach, the Improved Adaptive Probabilistic Search
(IAPS). We can summarize the benefits of IAPS as
follows:

& Dynamic Topology : IAPS is based on multi-agent sys-
tems, and the walkers are independent. This feature pro-
vides consistency for current network topologies.

& Perception : In IAPS, information is exchanged between
different neighbor nodes, so that nodes that have a higher
probability of successfully responding to a request can be
chosen.

& Link Quality : Nodes can easily be rewarded or punished
based on their responses to requests.

& High Efficiency : Whenever a node leaves the network
under IAPS, the node is inactivated and the paths that
include this node are eliminated from searching. In con-
trast, whenever a new node is added to the network, it is
added to some paths and its database is used for informa-
tion retrieval.

& Score Balancing : One node might precipitate success-
ful responses to some requests for a period but fail
to response to requests made after this period. IAPS
can decrease its scores gradually. Our simulation results
show that IAPS outperforms the original Adaptive
Probabilistic Searching (APS) algorithm with respect to
most evaluation metrics, especially the query success rate
and hits per query.

However, unlike a programming system which is
closed, an unstructured P2P network’s topology structure
is in practice fairly ad hoc. Peers join and leave the
system frequently. This will significantly impact the
score system, which partially relies on the P2P network
structure. The study in this paper can be improved by
taking this behavior into account. Therefore, in the fu-
ture, we plan to make some structural changes to IAPS
and test its usefulness in dynamic systems and also in struc-
tured P2P networks.

References

134 Peer-to-Peer Netw. Appl. (2015) 8:120–136

1. Iskandar I, Naomie S (2009) Selective flooding based on relevant
nearest-neighbor using query feedback and similarity across unstruc-
tured peer-to-peer networks. Journal of Computer Science 3(5):184–
190, ISSN 1549–3636

2. Balakrishnan H, Kaashoek MF, Karger D, Morris R, Stoica I (2003)
Looking up data in P2P systems. Communications of ACM 46(2):
43–48

3. Barkai D (2002) Technologies for sharing and collaborating on the
net. Proceeding of the 1st International Workshop on Peer-to-Peer
Computing (IPTPS ’02), ISBN: 0-7695-1503-7, 13–28. doi: 10.
1109/P2P.2001.990419

4. Daswani N, Garcia-molina H, Yang B (2003) Open problems in data-
sharing peer-to-peer systems. Proc . of the 9th International
Conference on Database Theory (ICDT’03) 1–15

5. Milojicic DS, Kalogeraki V, Lukose R, Nagaraja K, Pruyne J,
RichardB, Rollins M, Xu Z (2002) Peer-to-peer computing, HP Lab
technical report, HPL-2002-57 www.hpl.hp.com/techreports/
2002/HPL-2002-57R1.pdf

6. Lv Q, Cao P, Cohen E, Li K, Shenker S (2002) Search and replication
in unstructured peer to-peer network’s. Proceeding of the 16th ACM
International Conference on Supercomputing (ACM ICS’02) 258–
259. doi: 10.1145/514191.514206

7. Stoica I, Morris R, Karger D, Frans M, Kaashoek, Balakrishnan H
(2001) Chord: A scalable peer-to-peer lookup service for internet appli-
cations. Proceeding of the 2001 ACM Annual Conference of the Special
Interest Group on Data Communication (ACM SIGCOMM’01) 149–
160. http://pdos.csail.mit.edu/6.824/papers/stoica-chord.pdf

8. Clarke I, Sandberg O, Theodore BW, Hong W (2001) Free net: A
distributed anonymous information storage and retrieval system.
Proceedings of the ICSI Workshop on Design Issues in Anonymity
and Unobservability 46–66. www.cs.cornell.edu/people/egs/615/
freenet.pdf

9. Manku GS, Bawa M, Raghavan P (2003) Verity Inc, Symphony:
Distributed hashing in a small world. Proceeding of 4th USENIX
Symposium on Internet Technology and Systems (USITS’03) 127–
140. www.infolab.stanford.edu/~bawa/Pub/symphony.ps

10. Dorigo M, Gambardella LM (1997) Ant colony system: A coopera-
tive learning approach to the traveling salesman problem. IEEE
Transactions on Evolutionary Computation 1(1):53–66

11. Caro GD, Dorigo M (1998) AntNet: Distributed stigmergy control
for communications networks. Journal of Artificial Intelligence
Research 9:317–365

12. Babaoglu O, Meling H, Montresor A (2002) Anthill: A framework
for the development of agent-based peer-to-peer systems. In
Proceedings of the 22nd International Conference on Distributed
Computing Systems

13. Wu C, Yang K, Ho J (2006) AntSearch: An ant search algorithm in
unstructured peer-to-peer networks. In Proceedings of the 11th IEEE
Symposium on Computers and Communications

14. Michlmayr E (2006) Ant algorithms for search in unstructured peer-
to-peer networks, Proceedings of the 22nd International Conference
on Data Engineering Workshops (ICDEW ‘06). IEEE Computer
Society, Washington, pp 142–146

15. Tang D, Lu X, Yang L (2011) ACO-based search algorithm in un-
structured P2P Network. In Proceedings of the 2011 International
Conference of Information Technology, Computer Engineering and
Management Sciences, 1 (ICM ‘11), IEEE Computer Society,
Washington, 143–146

16. Tsoumakos D, Roussopoulos N (2003) Adaptive probabilistic search
in peer-to-peer networks. Technical Report, CS-TR-4451

17. Tsoumakos D, Roussopoulos N (2003) Adaptive probabilistic search
for peer-to-peer networks. Proceedings of the 3rd International
Conference on Peer-to-Peer Computing (P2P 2003) 102–109

http://dx.doi.org/10.1109/P2P.2001.990419
http://dx.doi.org/10.1109/P2P.2001.990419
http://www.hpl.hp.com/techreports/2002/HPL-2002-57R1.pdf
http://www.hpl.hp.com/techreports/2002/HPL-2002-57R1.pdf
http://dx.doi.org/10.1145/514191.514206
http://pdos.csail.mit.edu/6.824/papers/stoica-chord.pdf
http://pdos.csail.mit.edu/6.824/papers/stoica-chord.pdf
http://www.cs.cornell.edu/people/egs/615/freenet.pdf
http://www.cs.cornell.edu/people/egs/615/freenet.pdf
http://www.infolab.stanford.edu/~bawa/Pub/symphony.ps

18. Huo Q, Chen J, Xu X, Zhou Y, Liu X (2011) A location-aware
efficient content-based searching over unstructured P2P network.
International Conference on Network Computing and Information
Security (NCIS) 2:183–187. doi:10.1109/NCIS.2011.135

19. Rhea SC, Kubiatowicz J (2002) Probabilistic location and routing.
Proceedings of the 21st Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM’02) 3:1248–
1257. doi:10.1109/INFCOM.2002.1019375

20. Yang B, Garcia-Molina H (2002) Improving search in peer-to-peer
network’s.Proceeding of the 22nd IEEE International Conference on
Distributed Computing (IEEE ICDCS ’02) 5–14, doi: 10.1109/
ICDCS.2002.1022237

21. Jawhar I, Wu J (2004) A two-level random walk search protocol for
peer-to-peer networks. Proceeding of the 8th World Multi -
Conference on Systemic , Cybernetics and Informatics 1–5. doi:
www.faculty.uaeu.ac.ae/ijawhar/publications/randw_S942DB.pdf

22. Tigelaar AS, Hiemstra D, Trieschnigg D (2012) Peer-to-peer infor-
mation retrieval: An overview. ACM Transactions on Information
Systems (TOIS) 30(2):1–34. doi:10.1145/2180868.2180871

23. Crespo A, Garcia-Molina H (2002) Routing indices for peer-to-peer
systems. Proceeding of the 22nd International Conference on
Distributed Computing Systems (IEEE ICDCS’02) 23–32. doi: 10.
1109/ICDCS.2002.1022239

24. Himali DMR, Prasad SK (2011) SPUN: A P2P Probabilistic
search algorithm based on successful paths in unstructured
networks. IEEE International Symposium on Parallel and
Distributed Processing Workshops 1610–1617. doi: 10.1109/
IPDPS.2011.316

25. Kalogeraki V, Gunopulos D, Zeinalipour-Yazti D (2002) A local
search mechanism for peer-to-peer networks. Proceedings of the 11th
ACMConference on Information and KnowledgeManagement (ACM
CIKM’02) 300–307. doi: 10.1145/584792.584842

26. Yang C, Li X (2005) Dominating-set-based searching in peer-to-peer
networks. International Journal of High Performance Computing and
Networking 3(4):205–210. doi:10.1504/IJHPCN.2005.008562

27. Wu Y, Izumi T, Ooshita F, Kakugawa H, Masuzawa T (2007) An
adaptive randomized search protocol in peer-to-peer systems,
Proceedings of the 2007 ACM symposium on Applied computing
533–537. doi: 10.1145/1244002.1244126

28. Delbru R, Campinas S, Tummarello G (2012) Searching web data:
An entity retrieval and high-performance indexing model. Elsevier
Web Semantics: Science, Services and Agents on the World Wide
Web archive 10:33–58. doi:10.1016/j.websem.2011.04.004

29. Liu M, Koslela T, Ou Z, Zhou J, Riekki J, Ylianttila M (2011) Super-
peer-based coordinated service provision. Journal of Network and
Computer Applications archive 34(4):1210–1224. doi:10.1016/j.
jnca.2011.01.007

30. Lee P, Jayasumana AP, DilumBandara HMN, Lim S, Chandrasekar
V (2012) A peer-to-peer collaboration framework for multi-sensor
data fusion. Journal of Network and Computer Applications archive
35(3):1052–1066. doi:10.1016/j.jnca.2011.12.005

31. Association for ComputingMachinery (1998) ACM computing clas-
sification system (ACM CCS)

32. Ripeanu M, Foster I, Iamnitchi A (2002) Mapping the Gnutella
network: Properties of large-scale peer-to-peer systems and implica-
tions for system design. IEEE Internet Computing Journal 6

33. Ramzan N, Park H, Izquierdo B (2012) Video streaming over P2P
networks: Challenges and opportunities. Image Communication
Journal 27(5):401–411. doi:10.1016/j.image.2012.02.004

34. Androutsellis-Theotokis S, Spinellis D (2004) A survey of peer-to-
peer content distribution technologies. ACM Computing Surveys
(CSUR) Journal 26(4):335–371

35. Cormen TH, Leiserson ChE, Rivest RL, Stein C (2009) Introduction to
algorithms, Second edition,MIT Press, ISBN 0-262-03384-4 168–171

36. Michlmayr E (2006) Ant algorithms for search in unstructured peer-
to-peer networks, Proceedings of ICDE

37. Marti S, Ganesan P, Molina HG (2004) DHT routing using social
links. Proceeding of the 3rdInternational Workshop on Peer-to-Peer
Systems (IPTPS’04)

Mohammad Shojafar received
his B.S. in Computer Engineer-
ing-Software major at Iran Uni-
versity Science and Technology,
Tehran, Iran (2001-2006) and
M.sc. at Qazvin Islamic Azad
University, Qazvin, Iran (2007-
2010). He is currently a Ph.D. stu-
dent in Information and Commu-
nication Engineering at DIET
Dept. of the ”La Sapienza” Uni-
versity of Rome. He is an author/
co-author of 25+ peer reviewed
publications in Springer, Elsevier
and IOS press Publishers. Also,

Mohammad was a Programmer and Analyzer in Exploration Directorate
Section at N.I.O.C in Iran from 2012-2013. His current research focuses
on wireless communications, distributed computing and optimization.
Email: shojafar@diet.uniroma1.it, WWW.mshojafar.com

Jemal H. Abawajy is a faculty
member in the School of In-
formation Technology, Deakin
University, Australia. He is ac-
tively involved in funded re-
search in robust, secure and reli-
able resource management for
pervasive computing (mobile,
clusters, enterprise/data grids,
web services) and networks (wire-
less and sensors) and has pub-
lished more than 150 research ar-
ticles in refereed international
conferences and journals and
books. He is currently the princi-
pal supervisor of 13 PhD students

and co-supervising 3 PhD students. Prof. Abawajy is on the editorial
board of several international journals. Prof. Abawajy has been a member
of the organizing committee for over 100 international conferences serv-
ing in various capacity including chair, general co-chair, vice-chair, best
paper award chair, publication chair, session chair and program commit-
tee. Email: jemal.abawajy@deakin.edu.au

Peer-to-Peer Netw. Appl. (2015) 8:120–136 135

http://dx.doi.org/10.1109/NCIS.2011.135
http://dx.doi.org/10.1109/INFCOM.2002.1019375
http://dx.doi.org/10.1109/ICDCS.2002.1022237
http://dx.doi.org/10.1109/ICDCS.2002.1022237
http://www.faculty.uaeu.ac.ae/ijawhar/publications/randw_S942DB.pdf
http://dx.doi.org/10.1145/2180868.2180871
http://dx.doi.org/10.1109/ICDCS.2002.1022239
http://dx.doi.org/10.1109/ICDCS.2002.1022239
http://dx.doi.org/10.1109/IPDPS.2011.316
http://dx.doi.org/10.1109/IPDPS.2011.316
http://dx.doi.org/10.1145/584792.584842
http://dx.doi.org/10.1504/IJHPCN.2005.008562
http://dx.doi.org/10.1145/1244002.1244126
http://dx.doi.org/10.1016/j.websem.2011.04.004
http://dx.doi.org/10.1016/j.jnca.2011.01.007
http://dx.doi.org/10.1016/j.jnca.2011.01.007
http://dx.doi.org/10.1016/j.jnca.2011.12.005
http://dx.doi.org/10.1016/j.image.2012.02.004
http://WWW.mshojafar.com

Zia Delkhah Received His Bsc in
Computer Engineering-Software
major Sari Islamic AzadUniversity,
Sari, Iran (2001–2006) and Msc in
Information Technology major at
Qazvin Islamic Azad University,
Qazvin, Iran (2007–2010). His Spe-
ciality is Peer to Peer systems and
distributed systems. He has pub-
lished two papers in IEEE confer-
ences till now. He is a instructor of
Sari Islamic Azad University now.
Email: ziadelkhah@gmail.com

Ali Ahmadi Received His Bsc in
Computer Engineering-Software
major Sari Islamic Azad Universi-
ty, Sari, Iran (2001–2006) and
Msc in Information Technology
major at Qazvin Islamic Azad
University, Qazvin, Iran (2007–
2011). His Speciality is Wireless
sensor network and distributed
systems. He has published two pa-
pers in IEEE conferences till now.
He is an instructor of Sari Islamic
Azad University now. Email:
ahmadiali83@gmail.com

Zahra Pooranian received her
Msc in Computer Architecture de-
gree as honor student in Dezful
Islamic Azad University since
2011. She is an instructor in Sama
University in Dezful and Ahvaz
since 2009. Her research interest
in Grid computing specially in re-
source allocation and scheduling.
She has worked on several papers
in decreasing time andmakespan in
grid computing by using several AI
methods such as GA, GELS, PSO,
and ICA. She has published more
than 8 papers, 2 Springer journals

in grid scheduling and resource allocation, and various conferences, such as
ICCCIT’11, ICEEE’11 and TSP’13. Email: Zahra.pooranian@gmail.com

Ajith Abraham’s received the
Ph.D. degree in Computer Science
from Monash University, Mel-
bourne, Australia. He is currently
theDirector ofMachine Intelligence
Research Labs (MIR Labs), Scien-
tific Network for Innovation and
Research Excellence, USA, which
has members from more than 100
countries. He has a worldwide aca-
demic and industrial experience of
over 23 years. He works in a multi
disciplinary environment involving
machine intelligence, network secu-

rity, and various aspects of networks, e-commerce, Web intelligence, Web
services, computational grids, data mining, and their applications to various
real-world problems. He is an author/co-author of 900+ peer reviewed
publications, h-index 54 and has over 12,000+ citations. He has also given
more than 60 plenary lectures and conference tutorials in these areas. Since
2008, he is the Chair of IEEE Systems Man and Cybernetics Society
Technical Committee on Soft Computing and a Distinguished Lecturer of
IEEE Computer Society representing Europe (since 2011). Dr. Abraham is a
Senior Member of the IEEE, the Institution of Engineering and Technology
(UK) and the Institution of Engineers Australia (Australia), etc. He is the
founder of several IEEE sponsored annual conferences, which are now
annual events. More information at: http://www.softcomputing.net and
Email: Ajith.Abraham@ieee.org

136 Peer-to-Peer Netw. Appl. (2015) 8:120–136

http://www.softcomputing.net

	An efficient and distributed file search in unstructured peer-to-peer networks
	Abstract
	Introduction
	Related work
	System model
	Improved adaptive probabilistic search (IAPS)
	Search phase
	Neighbor selection phase
	Scoring phase
	Flow control phase

	Performance evaluation
	Success rates
	Average number of discovered objects (Hit per query)
	Response distribution (Distance rate per steps)
	Duplicate messages

	Conclusions and future research directions
	References

