
Copyright 2013. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 7, No. 1, March 2013, pp. 44-52

An Efficient Scheduling Method for Grid Systems Based on a
Hierarchical Stochastic Petri Net

Mohammad Shojafar*

Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy

shojafar@diet.uniroma1.it

Zahra Pooranian

Department of Computer, Dezful Branch, Islamic Azad University, Dezful, Iran

zahra.pooranian@gmail.com

Jemal H. Abawajy

School of Information Technology, Deakin University, Melbourne, Victoria, Australia

jemal.abawajy@deakin.edu.au

Mohammad Reza Meybodi

Computer Engineering and Information Technology Department, Amirkabir University of Technology, Tehran, Iran

mmeybodi@aut.ac.ir

Abstract
This paper addresses the problem of resource scheduling in a grid computing environment. One of the main goals of grid
computing is to share system resources among geographically dispersed users, and schedule resource requests in an effi-
cient manner. Grid computing resources are distributed, heterogeneous, dynamic, and autonomous, which makes
resource scheduling a complex problem. This paper proposes a new approach to resource scheduling in grid computing
environments, the hierarchical stochastic Petri net (HSPN). The HSPN optimizes grid resource sharing, by categorizing
resource requests in three layers, where each layer has special functions for receiving subtasks from, and delivering data
to, the layer above or below. We compare the HSPN performance with the Min-min and Max-min resource scheduling
algorithms. Our results show that the HSPN performs better than Max-min, but slightly underperforms Min-min.

Category: Distributed computing

Keywords: Grid computing; Hierarchical stochastic Petri net (HSPN); Resource scheduling; Resource allocation;

Modeling

I. INTRODUCTION

Recent trends in parallel processing system design and
deployment have been toward the development of distrib-

uted network systems [1]. In particular, grid computing
systems, in which networks of computers from multiple
administrative domains are integrated to create large-scale
virtual computers, are becoming more prevalent. Many dif-

Received 27 January 2013, Accepted 28 February 2013

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2013.7.1.44 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

An Efficient Scheduling Method for Grid Systems Based on a Hierarchical Stochastic Petri Net

Mohammad Shojafar et al. 45 http://jcse.kiise.org

ferent groups have been involved in a collaborative effort
to establish so-called virtual organizations (VOs). A VO
may be established to perform a single task, and then dis-
appear just as quickly [2, 3]. Grid computing has evolved
beyond its roots in academic science, and is currently on
the threshold of mainstream commercial adoption. One of
the promises of grid computing is that it will enable appli-
cations to be executed across multiple sites. Grid comput-
ing technology is developing rapidly, and many have begun
to run large-scale parallel applications on these systems
[4]. Some of the applications require coordinated access
to resources that are managed by autonomous entities.
This coordinated access is known as resource scheduling.
In this paper, we address the problem of resource

scheduling for global resource sharing in a grid comput-
ing environment. Resource scheduling is a crucial issue
for the development of stable and effective production
grid computing infrastructures [5]. However, since grid
computing resources are distributed, heterogeneous, dynamic,
and autonomous, deciding how to allocate the grid resources
to meet the requirements of applications is a challenging
and complex issue.
We propose a new approach to grid computing resource

scheduling, the hierarchical stochastic Petri net (HSPN),
to optimize grid resource sharing. Stochastic Petri nets are
modeling tools that can easily be used to analyze and eval-
uate complex models of discrete event dynamic systems
(DEDSs) for performance and reliability. Probabilistic
models are automatically constructed, based on a set of
results underlying the dynamic behaviors of these nets,
from which the theory of untimed Petri nets is derived [6].
The HSPN categorizes resource requests in three layers,
where each layer has special functions to receive subtasks
from, and deliver data to, the layer above or below. This
hierarchical model reduces the complexity of scheduling
[7]. We compare the performance of the HSPN with the
Min-min and Max-min resource scheduling algorithms,
and our experiments show that the HSPN performs better
than Max-min, but slightly underperforms Min-min.
The rest of this paper is organized as follows. Section

II presents related work on grid computing resource
scheduling, focusing on Petri nets. Section III outlines the
grid resource scheduling problem, and Section IV dis-
cusses the HSPN, our proposed approach. Section V
evaluates the performance of the HSPN, and compares it
with the performance of Min-min and Max-min. Finally,
Section VI presents our conclusions, including the advan-
tages and disadvantages of the HSPN, and discusses
future research directions.

II. RELATED WORK

Scheduling and resource allocation are important issues
for grid computing. Considerable research over the last
decade has addressed the problem of job scheduling for

parallel and distributed systems. Abawajy and Danda-
mudi [7, 8] propose an online dynamic scheduling policy
that manages multiple job streams, with the aim of improv-
ing the mean response time and system utilization. Yu
and Buyya [9] present a general framework to facilitate
directed acyclic graph (DAG) scheduling in grid systems.
However, their research does not account for dynamic
changes in grid computing resources. Several Petri net
models, such as extended time Petri nets, colored Petri
nets (CPNs), and stochastic Petri nets (SPNs), have been
developed to address dynamic changes, and are consid-
ered to be effective tools for scheduling and resource
allocation in grid computing systems [10-12].
Generally, Petri nets assign tasks to grid resources, using

either a distributed scheme, or a hierarchical scheme [13,
14]. In a distributed scheme, a broker considers resources to
be distributed states for each request, sends the request to
the sites that contain the distributed resources, and receives
results from the distributed sites’ coordinators. In a hier-
archical scheme, requests for resources from a site are
arranged hierarchically. Resources are classified based on
their geographical location in relation to the site making
the request, and sites have coordinators at different levels.
Tasks are sent through the hierarchical brokers, to sites
that have the needed resources. A distributed scheme is
better than a hierarchical scheme, when all tasks are locally
requested on sites; a request is sent directly to the brokers
on sites where the resource is available. Otherwise, a
hierarchical scheme is better for resource allocation and
responding to requests. In a hierarchical scheme, scheduling
occurs in three layers, and each site has one broker and
scheduler, to control and manage allocation of its resources.
A three-layer model based on a hierarchical time Petri

net (HTPN) is presented in [10], with different Petri net
models constructed for each level. The Petri net models
that the HTPN uses for grid resource scheduling are dif-
ferent from the models in our proposed method. Also, the
HTPN focuses on independent tasks, and does not con-
sider dependent tasks. Dependent task scheduling is pre-
sented in [11], using an extended time Petri net. The grid
resource scheduling model based on Petri nets is extended
in [12], which includes a discussion of existing studies of
grid scheduling using Petri nets, and proposes a four-level
scheduling algorithm that considers independent tasks. In
the present paper, we propose the HSPN, a hierarchical
scheme that uses SPNs to schedule and allocate resources,
based on the hierarchical and distributed schemes pre-
sented in [15]. Our preliminary version of this paper,
which is published in [16, 23], introduced the algorithm,
without considering the models in detail.

III. THE GRID RESOURCE SCHEDULING
PROBLEM

The efficiency of our proposed algorithm for indepen-

Journal of Computing Science and Engineering, Vol. 7, No. 1, March 2013, pp. 44-52

http://dx.doi.org/10.5626/JCSE.2013.7.1.44 46 Mohammad Shojafar et al.

dent task scheduling problem depends on minimizing
makespan. When scheduling tasks in a grid network, the
broker should map n tasks T = T1, T2, …, T

n
 to m avail-

able resources R = R1, R2, …, R
m
 in a way that minimizes

the makespan, which is the maximum completion time
for these tasks, as defined in Equation (1).

(1)

where the ETC matrix gives each task’s execution time
for each resource. It is assumed that every task executes
on some resource, and is not mapped to another machine,
until its execution ends.
As an example, given two resources {R1, R2} and eight

tasks {T1, T2, T3, T4, T5, T6, T7, T8}, ETC might be as
shown in Equation (2). The values show the runtime of
each task on each resource, without considering the
resource’s queue. When we also take into account the fact
that each resource has several tasks in its queue, we
arrive at the makespan, as defined above. Each resource
has a certain execution rate per one million instructions
(MI) so it is better to separate tasks into resource groups
based on their time and cost consumption. Each task
includes a certain number of instructions, which is used
in Equation (3) to calculate the task’s execution time on
each resource. The number of instructions for each task
comes from a uniform distribution on [100 MI, 110 MI].

(2)

For each (i,j):

. (3)

If we sort the tasks in the present example in order of
their execution times, they will fall into the two groups

shown in Table 1. In this table, each task’s deadline is
chosen at random.
The queue for R1 in Table 1 has T2 as the first task and

T8 as the last task, while the queue for R2 has T5 as the
first task and T4 as the last task. Based on Equation (1),
the makespan for these tasks is shown in the series of
equations in (4).

Makespan (T1) = T2,1+ T7,1+ T1,1 = 1+1+2 = 4
Makespan (T2) = T2,1 = 1
Makespan (T3) = T5,2+ T6,2+ T3,2 = 1+3+4 = 8
Makespan (T4) = T5,2+ T6,2+ T3,2+ T4,2 = 1+3+4+6 = 14
Makespan (T5) = T2,2 = 1
Makespan (T6) = T5,2+ T6,2 = 1+3 = 4
Makespan (T7) = T2,1+ T7,1 = 1+1 = 2
Makespan (T8) = T2,1+ T7,1+ T1,1+ T8,1 = 1+1+2+2 = 6

(4)

Providers will charge customers based on the time and
cost of each task per second (makespan).

IV. OUR PROPOSED METHOD (HSPN)

In this section, we introduce the HSPN, our proposed
three-level grid resource scheduling model.
Fig. 1 shows the high-level structure of the HSPN.

Resources are connected through a three-level hierarchi-
cal network. The first level is a wide area network
(WAN) that connects local area networks (LANs). The
second level is composed of the LANs that connect com-
puting resources (personal computers and high perfor-
mance computers), and the third level connects storage
resources and other resources. In this three-level schedul-
ing scheme, unlike the hierarchical and distributed schemes,
users submit all tasks to a home scheduler at their own
site, rather than to a grid scheduler, which preserves the
autonomy of grid resources, and makes it convenient for
users to submit and supervise tasks. In addition, the three-
level scheme adds a local scheduler between the home
scheduler and the grid scheduler, which not only removes
some pressure from the grid scheduler, but also makes it
possible for tasks to be executed locally.

makespan max ready j[]
i=1

n

∑ ETC i,j[]+⎝ ⎠
⎛ ⎞ ,=

 for, j 1,2...m=

T1

T2

T3

T4

T5

T6

T7

T8

R1 R2

2

1

3

4

5

3

1

2

1

3

4

6

1

3

4

5

ETC i,j() Instructions Ti()
resource_excution_per_MI Rj()
--=

Table 1. Tasks assigned to two separate groups, for allocation to
the resources

Task T1 T2 T3 T4 T5 T6 T7 T8

R1 ▲3 ▲1 ▲2 ▲4

R2 ▲3 ▲4 ▲1 ▲2
Fig. 1. The three layers for assigning tasks and subtasks.

An Efficient Scheduling Method for Grid Systems Based on a Hierarchical Stochastic Petri Net

Mohammad Shojafar et al. 47 http://jcse.kiise.org

Table 2 explains the notation for the HSPN model,
showing the places and transitions that we use to simulate
our hierarchical scheduling.
Each request for a grid resource is assessed and ana-

lyzed by the resource’s local scheduler. Each task can be
divided into several independent subtasks. Users submit
tasks to their home scheduler with processing require-
ments, such as estimated processing time, estimated com-
munication time, deadline, and degree of parallelism.
We have modeled these schedulers in the HSPN. The

processes of task submission and assignment are as fol-
lows:

● A user submits a task to the home scheduler through
the home machine. The home scheduler analyzes the
submitted task. If the task can be completed within

the deadline on the home machine, then the task will
be executed on the home machine. Otherwise, the
task is sent to the local scheduler.

● When the local scheduler receives the task submitted
by the home scheduler, it decides whether the task
can be completed within its deadline in the local area
network. If so, the local scheduler assigns subtasks of
the task to machines in the local area network, accord-
ing to some algorithm. Otherwise, the task is sent to
the grid scheduler.

● When the grid scheduler receives a task submitted by
a local scheduler, it inserts the task into its queue of
tasks.

The HSPN model, which depends on hierarchical sched-
uling, as shown in Fig. 1, is illustrated in Fig. 2. First, the
home scheduler queue is searched. If the requested
resource is not found on the home machine, then the
request is sent to the local site coordinator, to try to find
the best resource in the site, based on the QoS specified
by the task parameters. The local scheduler searches the
machines in its site. If the best resource is not found in
that site, the coordinator sends a request to the site’s bro-
ker, to contact brokers at other sites, to search for the
resource in their sites. In this way, the grid scheduler
enables a task to be allocated resources in other sites.
We implemented this model using GridSim [17], a

resource scheduling simulator for grid systems. In Grid-
Sim, entities use events for both service requests, and ser-
vice deliveries. An event can be raised by any entity for
either immediate delivery, or delivery with a specified
delay, to itself or other entities. Events that originate from
the same entity to which they are delivered, are called
internal events, and those that originate from external enti-
ties, are called external events. GridSim protocols are used

Table 2. Notation for the hierarchical stochastic Petri net model

Place (P) Description Transition (T) Description

P1 Task submitted by user t0 Submitting task to home machine

P2 Resources t1 Obtaining task and machine information

P3 Scheduling task t2 Cannot complete task within deadline

P4 Submitting task t3 Can complete task within deadline

P5 Executing task t4 Sending task to local scheduler

P6 Executing remote task t5 Assigning task to home scheduler

P7 Task completed t6 or t8 Executing remote or home task

P8 Remote task t7 Submitting completed remote subtask

Pk1,Pk3,Pk5 Output for submitting task

Completing subtask

Machine information

t9 Returning completed task

Pk2,Pk4 Input for remote task

Task completed

t10 Providing machine information

Fig. 2. Hierarchical stochastic Petri net model for resource
scheduling.

Journal of Computing Science and Engineering, Vol. 7, No. 1, March 2013, pp. 44-52

http://dx.doi.org/10.5626/JCSE.2013.7.1.44 48 Mohammad Shojafar et al.

to define entity services. An event is called synchronous,
when the event source entity waits until the event destina-
tion entity performs all the actions associated with the
event (i.e., until the full service is delivered). An event is
called asynchronous, when the event source entity that
raises the event continues with other activities, without
waiting for its completion. When the destination entity
receives events or service requests, it responds by send-
ing back one or more events, which can then take appro-
priate actions. External events can be synchronous or
asynchronous, but internal events must be raised only as
asynchronous events, to avoid deadlocks [17].

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our
proposed approach, and compare it to the performance of
two existing approaches.

A. Existing Scheduling Algorithms

We compare the HSPN with the Min-min and Max-
min algorithms [18-21], briefly explained as follows.

1) Min-min computes the minimum completion time
for each task over all machines. The task with the
minimum of these completion times is selected, and
assigned to the corresponding machine. The newly
mapped task is removed from its waiting queue, and
the process repeats, until all tasks are mapped.

2) Max-min is very similar to Min-min. The minimum
completion time is calculated for each task, but the
task with the maximum of these completion times is
selected, and assigned to the corresponding machine.

We use identical uniform parameters for the Min-min
and Max-min algorithms, when comparing them with the
HSPN.

B. Testing Environment

We implemented the HSPN using GridSim package in
NetBeans IDE 6.0 [22], each of which has four homoge-
nous processors and a 1,000 GB storage unit. However, the
machine at each site is different from the machines at the
other sites, so that each site is heterogeneous with respect
to the others.
There are 100 tasks that originate on each machine,

and each task has an associated execution time, and exe-
cution cost. We used 100 tasks for each machine, because
of the constraints of the underlying system environment;
a greater number of tasks would not leave enough space
in Java’s heap for the grids. Table 3 shows the task states:
there are four states, which are based on the resources
that need to be run. Each task has a certain number of

instructions, selected as a uniform distribution on [100
MI, 110 MI]. There are eight resources, and the resources
each task needs to execute its instructions are defined by
a uniform distribution on the range [1, 9], rounded up to
an integer. Each resource has a queue of tasks that need
that resource, and tasks are added to these queues, along
with the number of instructions that comprise the tasks.
So, when tasks are assigned, they are added to the
resources that are needed. This means that each resource
has a queue of tasks each which has an instruction num-
ber. All tasks are executed 100 times, to determine the best
way to assign resources to tasks. The thinnest requests,
for which it is easy to find resources, need only one or
two resources, while the thickest requests need seven or
eight.
The 100 tasks originating from each machine are sepa-

rated into four groups, as shown in Table 4. The requests
for each group of 25 are ordered, from the thinnest
request to the thickest request. The four groups represent
the four different states that tasks can be in, and are
ordered based on their ETC values. This provides mate-
rial for four tests in the HSPN, with 100 iterations to pro-
vide the best solutions.
The following section presents the results.

C. Performance Metrics

We used average response time and average response
cost as metrics to evaluate the performance. These parame-
ters are defined as follows:

● Average response time per request (ART): This met-
ric evaluates the intervals between when a resource
allocation request is received, and when the response

Table 3. Task states

State
Max resources

requests for (Ti)

Min resources

requests for (Ti)

Thickest request 8 7

Medium request 6 5

Average request 4 3

Thinnest request 2 1

Table 4. Budget/time deadlines for the 100 tasks assumed in
simulation and tests

Budget Time deadline Number of tasks

No No 25-first

No Yes 25-second

Yes No 25-third

Yes Yes 25-forth

An Efficient Scheduling Method for Grid Systems Based on a Hierarchical Stochastic Petri Net

Mohammad Shojafar et al. 49 http://jcse.kiise.org

is sent. The response time in HSPN is calculated as
the sum of the times needed to pass through the three
layers, and depends on the request; we can say that
ART is the makespan for each task.

● Average response cost per request (ARC): We define
the response cost as the delivered data cost or resource
cost for a task. All resource scheduling algorithms
consider this metric. They usually consider the clos-
est resources to the task site whose costs are less than
the cost indicated for the task. However, it is possible
for some of these resources to have costs that are
slightly greater than the indicated cost. For example,
if T1 wants a resource that costs less than $300, we
search for resources that cost less than $300 + ((1/
100) × 300), or $303. The ARC is the cost that the
schedulers find for a response accepted by the user.
In the HSPN, the ARC is the sum of the costs of
passing through the three layers, and depends on the
request. Some requests do not need to be sent to the
grid layer or the local layer, so their cost is less than
the cost for other methods.

D. Discussion of Results

Fig. 3 illustrates the ART per request coming from
each user. The plot shows that Min-min is better than
both Max-min and the HSPN for the first 25 tasks, with
the HSPN falling between Min-min and Max-min. We
considered the maximum time to be 36,000 seconds, and
the maximum cost to be $3,000. The times and costs
increase from the 26th task to the 100th. As Fig. 3 shows,
HSPN is near Min-min in ART, and it is better than Min-
min for thick requests from the fourth class of the 25th
task group. Moreover, the HSPN decreases the ART for

Max-min by approximately 11%–12%. These results
reflect the fact that some tasks found better resources,
when searching the grid category.
Fig. 4 presents the average allotted time for each task

for the three algorithms, and shows that the HSPN con-
sumes an average of more than 150 units of time for the
tasks, compared to Min-min; this is due to the context
switches between layers. However, the HSPN consumes
over 1,500 units less than Max-min, and hence decreases
its average time allocation by approximately 10%.
Fig. 5 illustrates the ARC for each user’s requests. The

plot shows that for the first 25 tasks, which do not men-
tion cost and time, all three algorithms deliver high value
for each task; but for the second group of tasks, we con-
sidered a maximum cost of $3,000. The scheduling should
involve only the machines whose cost is less than the cost
indicated for each task, which is Cost (Task) + ((1/100) ×

Fig. 3. Average response time (ART, or makespan) per request.
HSPN: hierarchical stochastic Petri net.

Fig. 4. Average time allocated for each task. HSPN: hierarchical
stochastic Petri net.

Fig. 5. Average response cost (ARC) per request. HSPN: hierarchical
stochastic Petri net.

Journal of Computing Science and Engineering, Vol. 7, No. 1, March 2013, pp. 44-52

http://dx.doi.org/10.5626/JCSE.2013.7.1.44 50 Mohammad Shojafar et al.

Cost (Task)). As we can see, the HSPN decreases the cost
by bounding the resources, but the decrease is not better
than that obtained by Min-min. However, it is better than
the cost obtained by Max-min. For thick requests, the
performance of the HSPN is similar to Min-min, but
sometimes it is better.
This is clearer in Fig. 6, which shows the average costs

for tasks in the three algorithms. As can be seen, the aver-
age cost for the HSPN is about 170 units higher than for
Min-min; this is related to the HSPN’s context switch
between layers. On the other hand, the HSPN decreases
Max-min’s average cost for 100 tasks by approximately
200 units, or approximately 11%.

VI. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

No method for scheduling and allocating resources is
optimal for grid computing systems, because these sys-
tems are heterogeneous, dynamic, and expanding world-
wide. This paper presented a three-level resource scheduling
scheme for grid computing environments. The HSPN’s
resource scheduling scheme is modeled and analyzed by
a hierarchical SPN, with different SPN models schedul-
ing the resources of different layers (i.e., the home sched-
uler, the local scheduler and the grid scheduler).
We compared the HSPN with two major resource

scheduling algorithms that are applicable in grid systems:
Min-min and Max-min, and we used netbeans 6.0 IDE to
analyze the results in a GridSim Jar file We used three
queues for the schedulers, with Gridlet brokers sending
requests between the layers. We evaluated the HSPN for
100 tasks, and found that it can decrease the execution
time for tasks in on the order of 10%–11%, compared to
Max-min. Moreover, the HSPN can be used for schedul-
ing and allocating resources to tasks or subtasks. The

HSPN can separate tasks based on their requested
resources, but the other two methods cannot do so.
Hence, the HSPN could see widespread use for schedul-
ing in grid computing.
In the future, we plan to extend and implement our

method for dependent tasks based on artificial intelli-
gence algorithms, in order to decrease the scheduling time,
and the time needed for resource allocation. We plan to
improve the HSPN, to provide better results in compari-
son to the Min-min method.

REFERENCES

1. B. Javadi, J. H. Abawajy, M. K. Akbari, “Modelling and

analysis of heterogeneous loosely-coupled distributed sys-

tems,” School of Information Technology, Deakin Univer-

sity, Australia, Technical Report TR C06/1, 2006.

2. G. Koole and R. Righter, “Resource allocation in grid com-

puting,” Journal of Scheduling, vol. 11, no.3, pp. 163-173,

2008.

3. I. Foster, “The anatomy of the grid: enabling scalable virtual

organizations,” Euro-Par 2001 Parallel Processing, Lecture

Notes in Computer Science vol. 2150, R. Sakellarius et al.,

editors, Heidelberg: Springer, pp. 1-4, 2001.

4. X. Wei, Z. Ding, S. Xing, Y. Yuan, and W. W. Li, “VJM: a

novel grid resource co-scheduling model for parallel jobs,”

International Journal of Grid and Distributed Computing,

vol. 2, no. , pp. 1-12, 2009.

5. J. H. Abawajy, “Adaptive hierarchical scheduling policy for

enterprise grid computing systems,” Journal of Network and

Computer Applications, vol. 32, no. 3, pp. 770-779, 2009.

6. G. Balbo, ”Introduction to stochastic Petri nets,” Lectures on

Formal Methods and Performance Analysis, Lecture Notes

in Computer Science vol. 2090, E. Brinksma et al., editors,

Heidelberg: Springer, pp. 84-155, 2001.

7. J. H. Abawajy and S. P. Dandamudi, “Scheduling parallel

jobs with CPU and I/O resource requirements in cluster

computing systems”, in Proceedings of the 11th IEEE/ACM

International Symposium on Modeling, Analysis and Simula-

tion of Computer and Telecommunications Systems, Orlando,

FL, 2003, pp. 336-343.

8. J. H. Abawajy and S. P. Dandamudi, “Parallel job schedul-

ing on multicluster computing systems,” in Proceedings of

the IEEE International Conference on Cluster Computing,

Hong Kong, China, 2003, pp. 11-18.

9. J. Yu, and R. Buyya, “A budget constrained scheduling of

workflow applications on utility grids using genetic algo-

rithms,” in Proceedings of the Workshop on Workflows in

Surpport of Large-Scale Science, Paris, 2006, pp. 1-10.

10. Y. Han, C. J. Jiang, and S. Luo, “Resource scheduling model

for grid computing based on sharing synthesis of Petri net,”

in Proceedings of the 9th International Conference on Com-

puter Supported Cooperative Work in Design, Coventry, UK,

2005, pp. 367-372.

11. Y. Han and X. Luo, “Modelling and performance analysis of

grid task scheduling based on composition and reduction of

Petri nets,” in Proceedings of the 5th International Confer-

Fig. 6. Average cost for each task. HSPN: hierarchical stochastic
Petri net.

An Efficient Scheduling Method for Grid Systems Based on a Hierarchical Stochastic Petri Net

Mohammad Shojafar et al. 51 http://jcse.kiise.org

ence on Grid and Cooperative Computing, Changsha, China,

2006, pp. 331-334.

12. X. Zhao, B. Wang, and L. Xu, “Grid application scheduling

model based on Petri net with changeable structure,” in Pro-

ceeding of 6th International Conference on Grid and Coop-

erative Computing, Los Alamitos, CA, 2007, pp. 733-736.

13. Y. Han, C. Jiang, and X. Luo, “Resource scheduling scheme

for grid computing and its Petri net model and analysis,”

Parallel and Distributed Processing and Applications, Lec-

ture Notes in Computer Science vol. 3759, G. Chen et al.,

editors, Heidelberg: Springer, pp. 530-539, 2005.

14. Z. Hu, R. Hu, W. Gui, J. Chen, and S. Chen, “General

scheduling framework in computational grid based on Petri

net,” Journal of Central South University of Technology, vol.

12, no. 1, pp. 232-237, 2005.

15. V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayap-

pan, “Distributed job scheduling on computational grids

using multiple simultaneous requests,” in Proceedings of

11th IEEE International Symposium on High Performance

Distributed Computing, Edinburgh, UK, 2002, pp. 359-366.

16. M. Shojafar, S. Barzegar, and M. R. Meybodi, “A new

method on resource scheduling in grid systems based on

hierarchical stochastic Petri net,” in Proceedings of the 3rd

International Conference on Computer and Electrical Engi-

neering, Chengdu, China, 2010, pp. 175-180.

17. R. Buyya and M. Murshed, “GridSim: a toolkit for the mod-

eling and simulation of distributed resource management and

scheduling for grid computing,” Concurrency and Computa-

tion: Practice and Experience, vol. 14, no. 13-15, pp. 1175-

1220, 2002.

18. B. Senthil Kumar, P. Chitra, and G. Prakash, “Robust task

scheduling on heterogeneous computing systems using seg-

mented MaxR-MinCT,” International Journal of Recent

Trends in Engineering, vol. 1, no. 2, pp. 63-65, 2009.

19. M. Y. Wu, W. W. Shu, and H. Zhang, “Segmented min-min:

a static mapping algorithm for meta-tasks on heterogeneous

computing systems,” in Proceedings of the 9th Heteroge-

neous Computing Workshop, Cancun, Mexico, 2000, pp.

375-385.

20. T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, and M.

Maheswaran, “A comparison of eleven static heuristics for

mapping a class of independent tasks onto heterogeneous

distributed computing system,” Journal of Parallel and Dis-

tributed Computing, vol. 61, no. 6, pp. 810-837, 2001.

21. R. Armstrong, D. A. Hensgen, and T. Kidd, “The relative

performance of various mapping algorithms is independent

of sizable variances in run-time predictions,” in Proceedings

of the 7th IEEE Heterogeneous Computing Workshop,

Orlando, FL, 1998, pp. 79-87.

22. NetBeans IDE, http://netbeans.org/downloads/index.html?

pagelang=.

23. M. Shojafar, S. Barzegar, and M. R. Maybodi, “Time opti-

mizing in Economical Grid Using Adaptive Stochastic Petri

Net Based on Learning Automata”, in Proceedings of Inter-

national Conference on Grid Computing & Applications

(GCA), Worldcomp, 2011, pp. 67-73.

Mohammad Shojafar

Mohammad Shojafar received his B.Sc. in Computer Engineering-Software major at Iran University Science
and Technology, Tehran, Iran (2001-2006) and M.Sc. at Qazvin Islamic Azad University, Qazvin, Iran (2007-
2010). He is Specialist in network programming in sensor field and Specialist in distributed and cluster
computing (Grid Computing and P2P Computing), AI algorithms (Fuzzy Logic, Learning Automata, and
Genetic algorithm), and Mathematical Optimization (Game Theory and Nonlinear programming). He
published 6 papers in IEEE, 2 papers in WASET, and 2 papers in WORLDCOMP Conferences Series held in USA,
and one ISI paper in IOS press till now. Mohammad was a Programmer and Analyzer in Exploration
Directorate Section at N.I.O.C in Iran. He is a Ph.D. student at Sapienza University of Rome “La Sapienza” from
2012.

Zahra Pooranian

Zahra Pooranian received her M.Sc. in Computer Architecture degree as honor student in Dezful Islamic
Azad University, 2011. She is an instructor in Sama University in Dezful and Ahvaz since 2009. Her research
interest is in grid computing, specially in resource allocation and scheduling. She has worked on several
papers in decreasing time and makespan in grid computing by using several AI methods such as GA, GELS,
PSO, and ICA. She has published more than 5 papers, especially in grid scheduling and resource allocation in
various conferences, such as WASET 2010-2011, ICCCIT 2011, and ICEEE 2011.

Journal of Computing Science and Engineering, Vol. 7, No. 1, March 2013, pp. 44-52

http://dx.doi.org/10.5626/JCSE.2013.7.1.44 52 Mohammad Shojafar et al.

Jemal H. Abawajy

Jemal H. Abawajy is a faculty member in the School of Information Technology, Deakin University, Australia.
He is actively involved in funded research in robust, secure and reliable resource management for pervasive
computing (mobile, clusters, enterprise/data grids, web services) and networks (wireless and sensors) and
has published more than 150 research articles in refereed international conferences and journals and books.
He is currently the principal supervisor of 13 Ph.D. students and co-supervising 3 Ph.D. students. Prof.
Abawajy is on the editorial board of several international journals. Prof. Abawajy has been a member of the
organizing committee for over 100 international conferences serving in various capacities including chair,
general co-chair, vice-chair, best paper award chair, publication chair, session chair and program committee.

Mohammad Reza Meybodi

Mohammad Reza Meybodi received the B.S. And M.S. degrees in Economics from Shahid Beheshti University
in Iran, in 1973 and 1977, respectively. He also received the M.S. and Ph.D. degrees from Oklahoma
University, USA, in 1980 and 1983, respectively, in Computer Science. Currently, he is a full professor in
Computer Engineering Department, Amirkabir University of Technology, Tehran, Iran. Prior to current
position, he worked from 1983 to 1985 as an assistant professor at Western Michigan University, and from
1985 to 1991 as an associate professor at Ohio University, USA. His research interests include channel
management in cellular networks, learning systems, parallel algorithms, soft computing and software
development.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

