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Abstract: In this paper, we address the problem of minimizing the total daily energy cost in a
smart residential building composed of multiple smart homes with the aim of reducing the cost
of energy bills and the greenhouse gas emissions under different system constraints and user
preferences. As the household appliances contribute significantly to the energy consumption of
the smart houses, it is possible to decrease electricity cost in buildings by scheduling the operation
of domestic appliances. In this paper, we propose an optimization model for jointly minimizing
electricity costs and CO2 emissions by considering consumer preferences in smart buildings that are
equipped with distributed energy resources (DERs). Both controllable and uncontrollable tasks and
DER operations are scheduled according to the real-time price of electricity and a peak demand charge
to reduce the peak demand on the grid. We formulate the daily energy consumption scheduling
problem in multiple smart homes from economic and environmental perspectives and exploit a mixed
integer linear programming technique to solve it. We validated the proposed approach through
extensive experimental analysis. The results of the experiment show that the proposed approach can
decrease both CO2 emissions and the daily energy cost.

Keywords: Microgrid; Energy Management; Smart Building; Energy Storage System (ESS);
Mixed Integer Linear Programming (MILP); Photovoltaic (PV).

1. Introduction

With the steadily rising electricity costs coupled with its impact on the environment, smart home
energy efficiency has become one of the major issues that is necessary to improve the overall efficiency
of power consumption in smart buildings. Smart grids (SGs) and micro-grids (MGs) have been
developed to address the soaring electricity costs [1]. A microgrid (MG) encompasses a portion of an
electric power distribution system that is located downstream of the distribution substation. It includes
a variety of distributed energy resource (DER) units (such as solar panel and wind turbine [2]) and
serves different types of end users of electricity and/or heat [3,4]. Each microgrid is able to supply
power to local residents in a small geographical area in a cost-effective manner, by integrating a
networked group of renewable generators and storage systems. A smart building with its own DER
can be considered a microgrid because DERs provide local energy for the smart home residents.

In this paper, we address the problem of sustainable power usage in smart buildings composed of
multiple smart homes. Since buildings contribute significantly to the overall power consumptions,
recently, the question of optimal energy management of smart buildings has drawn significant
attention. In smart homes, a considerable proportion of energy cost comes from smart home appliances.
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Therefore, there is significant potential for energy consumption and cost savings by minimizing
the daily power cost of smart home appliances. Moreover, the relation between smart building
residents’ comfort and power consumption has recently drawn much interest. Therefore, a smart
energy management solution that will reduce energy wastage while meaningfully balancing between
energy cost savings and smart home residents’ comfort level is necessary [5]. In addition, ways to
reduce the impact of energy generation and consumption on the environment through minimization
of greenhouse emission have drawn much interest. Therefore, the challenge is how to minimize the
daily electricity cost of multiple smart homes with the aim of reducing resident energy costs and the
CO2 emissions while simultaneously considering different system constraints and smart building
resident preferences and comforts. In this paper, we address this problem in a simple and effective
way by scheduling the operation of smart home appliances aiming at reducing energy costs and the
environmental impact of the considered households with little or no effect on the comfort level of the
smart home residents.

Although a variety of energy management systems for smart homes has been proposed [5–13],
there are very few solutions that have considered a detailed energy management optimization problem
that utilizes the energy cost savings and CO2 emission reduction as objectives without inconveniencing
the smart home residents. Furthermore, existing solutions are based on changing the living habits
of users to reduce energy costs and CO2 emissions by adjusting their demand according to time
differentiated electricity pricing and making appropriate consumption scheduling decisions [14].
Unfortunately, the approaches that require end-users to manage their energy consumption manually
will be time-consuming, require users to be available all the time and may not result in users’
satisfaction. Moreover, existing solutions consider only a single smart home while ignoring the states of
its neighbours, which can lead to a problem known as peak rebound [15]. In addition, existing systems
do not consider demand side management and a DER system in a smart home environment as tools to
significantly reduce electricity consumption and CO2 emissions. Therefore, there is still room for novel
energy management systems capable of reducing the energy bills for the smart building residents,
as well as reducing environmental impacts [6]. The authors in [13] schedule deferrable appliances
and energy resources in small buildings by using multi-time scale stochastic predictive control, the
genetic algorithm and linear programming. In fact, this method includes uncertainty/time-varying
of the power of the PV panels and model economic and technical constraints of the appliances and
sources and schedules day-scale and hour-scale deferrable appliances using a combination of GA
and LP. However, unlike our approach, we point out that: (i) the focus of [13] is on the stochastic
predictive control of the considered loads for smart homes, so that the resulting scheduler does not
support, by design, conflicting goals with operational constraints; (ii) the joint task (loads) and the PV
rate mapping afforded in [13] are, by design, static; and (iii) the scheduler in [13] does not perform
real-time user preferences and/or peak demand charge of the resources hosted by the serving request.

In this paper, we propose an energy management solution for a smart building, composed
of multiple smart homes with its own DER as a microgrid. Specifically, we present a solution to
the daily power consumption scheduling problem for household tasks over a finite time horizon.
Besides, DER operation scheduling in a smart building composed of multiple smart homes is also
investigated. We examine the validity of the proposed solution through numerical tests. The main
contributions of this work can be summarized as follows:

• We present a solution to the daily power consumption scheduling problem for household tasks
over a finite time horizon and DER operation scheduling in a smart building composed of multiple
smart homes.

• A mathematical formulation of the scheduling problem, based on a combination of several
single-objective MILP techniques, with the aim of minimizing the conflicting goals of reducing
CO2 emissions and total electricity costs is presented.

• We show that adding a DER system in a smart home environment leads to a significant reduction
in electricity consumption and CO2 emissions.
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• Extensive experiments to validate the efficacy of the proposed approach are presented.

The remainder of this paper is organized as follows. In Section 2, the related works are presented.
Section 3 presents the architecture for the system model. In Section 4, we develop the proposed
optimization model and its constraints. The numerical results of performance tests are presented in
Section 5, and some conclusions are drawn in Section 6.

2. Related Work

A wide range of energy management techniques in smart homes has recently been investigated.
A mixed integer linear programming (MILP) model has been proposed by [8] to optimally coordinate
both electrical and thermal units and household demands. Although this algorithm is a centralized
energy-based scheduling that uses the predictive control model, it does not support the uncertainty of
the electricity changes through the grid. The proposed solution is less scalable, and its communication
requirements for the prediction and scheduling are limited. Besides, in our method, we offer different
optimization solutions to the user, depending on their battery performance preferences. The problem
of optimal smart home energy management considering energy savings and a comfortable lifestyle was
discussed in [5]. Moreover, another work introduced new data measurement on seven households in
Belgium, which can be used to acquire relationships to dimension storage packages for grid-connected
PV panel installations [16]. The authors used high energy-density batteries, so they tended potentially
utilize the batteries for residential energy storage since the energy density was less important for
residential than for transportation applications. Furthermore, the distinction between controllable
and non-controllable tasks and related appliances has been presented in [17]. This monitored the
customers and actively managed their own energy usages. Furthermore, the authors in [18] presented
an active demand-side management self-consumption system based on artificial neural networks,
which employed microgrid and smart control to optimize the energy usage. The authors in [19]
investigated the variability of electricity demand profiles, which often use common statistics such as
the mean, standard deviation, variance and the coefficient of variation, and they claimed that they
reduced household grid demand variation by 35%. In another work, the authors in [20] presented a
smart home energy management model that jointly scheduled electrical and thermal appliances using
various types of appliances considering the residents’ consumption behaviour, seasonal probability,
a social random factor, the discomfort index and appliances’ starting probability functions. Recently,
the author in [21] presented a new approach considering a pervasive information system in a retail
environment. It helped to highlight the challenge of enhancing technical components with information
systems as a smart grid solution. Besides such method being of interest, it neither gave details of the
smart grid household power management, nor the current secure solutions, while our paper fills such
gaps. A multi-objective mixed integer nonlinear programming model was developed for optimal
energy use in a smart home. Through simulations performed under different scenarios using real
data, the obtained results were compared in terms of total energy consumption cost, users’ convenience
rates and thermal comfort level. The major drawback of this method falls into local energy and comfort
management of the demand response (DR) problem and does not support dynamic pricing, intermittent
renewable energy generation and other real-time technical aspects of energy saving.

A multi-objective genetic approach to domestic load scheduling in an energy management system
was discussed in [7]. The management of controllable domestic loads was aimed at minimizing the
electricity bill and the end-users’ dissatisfaction concerning two different aspects: the preferred time
slots for load operation and the risk of interruption of the energy supply. This method was considered
as an asset in DR scheduling; however, the scheduling on that demand side optimizing electricity
consumption behaviours was more complex. In contrast, we present a solution to the daily power
consumption scheduling problem for household tasks over a finite time horizon and DER operation
scheduling in a smart building composed of multiple smart homes.

Residential appliance DR energy management with electricity privacy protection by online
stochastic optimization was shown in [22]. This method requires knowledge of the statistics of the
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load requirements and the electricity prices, which may not be readily available. Moreover, dynamic
programming was utilized; however, the approach was observed to be computationally difficult
for a system with a large state space, hence suffering from the curse of dimensionality. An energy
management solution for households with solar-assisted thermal load considering renewable energy
and price uncertainty was discussed in [23]. In [9], the authors used artificial neural networks to
predict the heat demand in a house based on several factors, to achieve a better match between
demand and supply. Although these methods focused on one facet of the DR problem, which was
energy-provisioning and load balancing, the proposed methods are incompatible with wide-area
aggregation and intractable in large-scale problems. The studies in [12] addressed the demand side
management problem with game theory and reached the optimal performance for minimizing energy
costs under the Nash equilibrium constraints. This method has been prevalently used to respond to
demand profile shaping of management objectives for energy saving and cost/price of the individual
users in DR problem; however, it only considered one single snapshot on electricity prices and power
consumptions of individual appliances within an hour.

The authors of [24] utilized a deterministic energy management system based on load forecasting
and photovoltaic (PV) power predictions to enable a microgrid to perform day-ahead power scheduling.
The drawback of this method is in its secondary control to ensure power sharing among sources,
which is not generalized and depends on the characteristics of power flow within the microgrid
network and cannot be used in generic cases. Besides, it is complicated by the ageing infrastructure
of the existing power grid, which already causes problems for utilities and customers. This makes
the system unreliable, with low power quality, and consequently, this increases cost and customer
dissatisfaction.

To reduce energy costs and the peak-to-average ratio (PAR) among residents who share an energy
resource, the authors in [25] proposed an algorithm to implement energy consumption scheduling
devices inside smart meters in a smart grid. Particularly, that method considered only the minimization
energy cost and did not address the management of loads at the network control centre level, while
our method addresses both of these.

In [26], several types of controllable loads were considered to simulate a demand-side
management strategy relying on a load shifting approach. Subsequently, the heuristic-based
evolutionary algorithm was adopted to solve the minimization problem. Indeed, this method exploits
modelling of consumer utility/disutility of demand shifting and can be of interest for the optimization
of consumers’ consumption patterns within the framework.

The authors of [27] adapted an optimal residential load commitment architecture for a smart home
to reduce the residential payment and PAR by determining the on/off statuses of flexible appliances
and consuming the energy stored in a battery during high peaks, while selling the surplus back to the
utility. In this method, DR behaves as an intermediate between buyers and sellers, but it neglects the
impact of an extra peak, power-limiting strategy that is probably imposed by a load-serving entity.
In order to maintain a balance between demand and supply in multiple residences, [28] designed
a real-time coordinated home energy management model and handled the problem by dynamic
programming. This method disregards the operational constraints of the DS infrastructure; however,
this is highlighted in our method. The authors of [29] used an Android-based controller to remotely
control appliances in a smart home to provide comfort and security for the residents. This method
can be listed as flexible, scalable and expandable, but it needs to configure a new communication each
time a there is a new way of interaction between Android-based technologies.

In [30], the authors used the non-dominated sorting genetic algorithm II (NSGA-II) to enhance
the solution to multi-objective problems in smart grid systems. Although the idea is promising and
appealing, it does not cover the operational cost motivated by DR and loads. Specifically, the objectives
in [31] were to reduce cost and the end users’ dissatisfaction. The aim of the multi-objective problem
in [30] was to minimize the total generation cost for the units and the total amount of pollution in
multiple microgrids. The authors of [32] proposed energy consumption scheduling for a smart building
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of units with the same habits with the aim of reducing CO2 and cost saving without considering
user preferences and renewable energy. They failed to analyse the uncontrollable DERs of such
homogeneous buildings. To cover these limitations, the authors of [33] considered both economic and
environmental issues in demand response and used a weighted sum technique to jointly investigate
CO2 and cost reduction. The issue behind this method is that it does not consider electrical storage
systems (ESS), while it would be more flexible and efficient for consumers to manage their energy
use in response to time-varying electricity prices by storing energy and releasing it when it is more
convenient, as our method.

In summary, there are very few works that have considered a detailed energy management
optimization problem considering the energy cost savings and CO2 emission reduction as objectives
without inconveniencing the smart home residents. Furthermore, approaches that require the end-users
to manage their energy consumption may not result in users’ satisfaction. Moreover, existing solutions
consider only a single smart home while ignoring the states of its neighbours. In addition, existing
systems do not consider a DER system in a smart home environment as a tool to significantly reduce
electricity consumption and CO2 emissions. Unlike existing works, this study investigates economic
and environmental sustainability by the combination of several single-objective optimization models
and solves the problem with an MILP approach. We are concerned with scheduling a number of
user-specified smart appliances in their operation time windows (between the earliest starting time
and the latest ending time) to minimize CO2 emissions and save daily energy costs.

3. System Model

Figure 1 shows the high level system model of interest. It consists of the main power grid with its
own distribution network and a smart building with a number of smart homes and renewable energy
sources (PV panels) and energy storage system (ESS). Furthermore, the building is equipped with a
main energy management system to coordinate smart home appliances and DERs. The smart home
appliances include deferrable loads such as electric vehicle (EV), washer/dryer, etc. We assume that
the demand for energy in each smart home is different and is based on the residents’ living habits.

Figure 1. System model.

The proposed model can export energy to the national grid during periods when solar energy
production is greater than user demand. Conversely, when the locally generated energy is not
sufficient for domestic demands, there is a possibility of obtaining electricity from the main grid. In this
model, loads are divided into two categories: controllable and uncontrollable. Both controllable and
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uncontrollable appliances are assumed in our work. The uncertainty in renewable energy resources
is considered, and we also assume that the solar radiation is provided through a Beta distribution.
One-day ahead forecasted electricity prices and the emission intensity over time are taken into account
in order to show the variation in these. In addition, two different tariff schemes are considered that rely
on real-time price (RTP) and peak-demand charge (PDC). It is expected that users will buy electricity
from the grid when the electricity tariff and CO2 emissions are low and will consume the locally
generated energy otherwise.

4. Appliance Scheduling Optimization Problem Formulation

In this paper, the energy management problem in a smart building is modelled as an MILP over a
specific prediction time horizon T with discrete time steps t ∈ T. The model is developed for 1oneday
optimal scheduling that takes into account only operation and maintenance costs. Furthermore, the time
resolution is considered to be 30 min over a single day, so that one day has 48 slots.

4.1. Optimization Constraints

In this subsection, we aim to specify the optimization constraints coming from the real environment.

4.1.1. Execution Time Window for Each Appliance

Mathematically, for the scheduling of two categories of smart appliances, the appliance execution
time horizon is divided into H equal-length time slots (e.g., 30 min per slot). N denotes the number of
appliances i in each home j (i = 1, 2, . . . , N). For each domestic appliance, there is a starting time ST
and a maximal ending time EN such for which the appliance’s task must be completed during this
time window. The parameters for each appliance, including ST, ET, power consumption, the length of
the time window and the duration of the task operation, are adopted from [34] and shown in Table 1.
Furthermore, we limit ourselves to the case where each task is executed exactly once during the day in
each home.

We use a binary variable Eji(t) to indicate whether task i of home j is running (on/off) at time
t. Furthermore, we limit each task i hat home j can execute once during its time window, expressed
using Equation (1), where Pji denotes the operation time for task i in home j.

∑
STji≤t≤ETji−Pji

Eji(t) = 1 ∀i, j (1)

Indeed, the starting time of each task should be after the given earliest starting time (ST) and
must finish before the latest finishing time (ET).

4.1.2. Solar Panel

The building is equipped with a rooftop solar panel. Electricity generated by the PV system
will be consumed in the building in order to minimize the overall costs for the users. The power
generated by a PV module varies according to the solar radiation on the Earth’s surface, which mainly
depends on the installation site and the weather conditions. Power systems are inherently uncertain.
To deal with probabilistic data, appropriate probabilistic methods must be implemented. To model the
solar power uncertainty, the first task is to generate solar irradiation samples by a Beta distribution
function [35] and standard deviation (STD) value equal to 1000 W/m2. The PV modules are tested in
standard test conditions. The output power of the module is calculated as follows [36]:

PPV(R) =


Pr,PV

(
R2

RSTD Rc

)
i f 0 ≤ R ≤ Rc

Pr,PV

(
R

RSTD

)
i f Rc ≤ R ≤ RSTD

Pr,PV i f RSTD ≤ R

(2)
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where RSTD is solar radiation in the standard conditions, usually set to 1000 W/m2, Pr,PV is rated power
of the PV (k), RC is a certain radiation point, usually set to 150 W/m2, and R is solar irradiance (W/m2).

Table 1. Household appliance parameters. ST: earliest starting time; and, ET: latest ending time [34].

No. Appliance Name Power (KW) ST (h) ET (h) Time Window Length (h) Duration(h)

1 Dish Washer 1 9 17 8 2
2 Washing Machine 1 9 12 3 1.5
3 Spin Dryer 2.5 13 18 5 1
4 Cooker Top 3 8 9 1 0.5
5 Cooker Oven 5 18 19 1 0.5
6 Microwave 1.7 8 9 1 0.5
7 Interior Lighting 0.84 18 24 6 6
8 Laptop 0.1 18 24 6 2
9 Desktop 0.3 18 24 6 3
10 Vacuum Cleaner 1.2 9 17 8 0.5
11 Fridge 0.3 0 24 - 24
12 Electric Car 3.5 18 8 14 3

4.1.3. Energy Storage System

The available energy in the energy storage system at time t, PESS(t), is equal to the amount
available at t− 1, PESS(t− 1), plus the electricity charged minus the electricity discharged:

PESS(t) = PESS(t− 1) + δλESSPC
ESS(t)− δPD

ESS(t)/λESS (3)

where δ is the time interval duration, λESS is the ESS charge/discharge efficiency, PC
ESS(t) is the ESS

charge rate at time t and PD
ESS(t) is the ESS discharge rate at time t. At the beginning of the day, ESS has

an initial value, denoted as PESS(init). At the end of each day, the ESS must return electricity stored to
the initial state in order to prevent net accumulation. Hence, the constraint is as follows:

PESS(0) = PESS(T) = PESS(init) (4)

where PESS(init) is the initial state of electricity storage.
In order to avoid damaging the ESS, the rates of electricity charge/discharge cannot exceed the

energy storage limits [32], respectively, defined by the battery manufacturer:

PC
ESS(t) ≤ MCESS ∀t (5)

PD
ESS(t) ≤ MDESS ∀t (6)

where MCESS and MDESS are, respectively, the maximum charging rate and the maximum discharging
rate for the ESS.

The output of the energy storage should not be more than its designed capacity, MCESS:

PESS(t) ≤ MCESS ∀t (7)

4.1.4. Energy Balances

One of the important conditions is to balance the energy consumption. The electricity demand
must be met by the electricity generated by the PV, the ESS charge and power purchased from the
external grid Pbuy(t) minus the electricity sold to the main grid Psell(t) and the ESS discharge. Therefore,
the electricity balance is as follows:

∑
j

∑
i

CiEji(t) = PPV(R) + PC
ESS(t) + Pbuy(t)− PD

ESS(t)− Psell(t) ∀t (8)

where Ci is the constant power consumption capacity of task i [kWe].
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4.1.5. Peak Demand Charge

It is not economical to enhance the capacity of the connection between plants and the main grid to
address an energy shortage during the peak demand period. To handle this problem, we introduce a
further constraint to encourage residents to reduce their energy consumption. This method assumes an
agreed-upon threshold (th) Pth for each time interval. In this way, the appliance cannot be run outside
of the time preference interval. Moreover, if the energy demand from the main grid is less than this
threshold, users pay the normal electricity price; otherwise, they must pay an extra fee for the extra
demand PED(t), as follows:

Pbuy(t)− Pth ≤ PED(t) ∀t (9)

4.1.6. User Time Preferences

This constraint takes into account specific characteristics of users, namely their preferred time
intervals for running their tasks. Household tasks must be finished within and cannot be run outside
of their time preference ranges [37]:

| ST − ET |≥ len (10)

where len is the length of the load profile for an appliance.

4.2. Objective Functions

There are two important objectives to optimize in this work. The first objective is to minimize the
total energy cost, which is based on the operation and maintenance (OM) costs of the ESS and PV and
the cost of buying/selling energy from/to the grid under the RTP tariff, as follows:

OBJ1 = ∑
t

δCOM,ESSPD
ESS(t) + ∑

t
δCbuy(t)Pbuy(t)

+δCOM,PV PPV(R)−∑
t

δCsell(t)Psell(t)
(11a)

where COM,ESS (i.e., proportional to charge/discharge battery power) and COM,PV are the operation
and maintenance costs for the ESS (battery) and PV, respectively, and Cbuy(t) and Csell(t) are the price
of buying/selling electricity from/to the grid, respectively, at time t.

The penalty part of the demand charge tariff adds to the overall daily energy cost. If the demand is
below the threshold, the price scheme is RTP, and an extra cost is applied when it is over the threshold.
Where CED is the difference between the real electricity tariff from the grid and PDC, the second
scheme for the first objective is defined as follows:

OBJ1 = ∑
t

δCOM,ESSPD
ESS(t) + ∑

t
δCbuy(t)Pbuy(t)

+∑
t

δCEDPED(t) + δCOM,PV PPV(R)

−∑
t

δCsell(t)Psell(t)

(11b)

The aim of the second objective is to minimize CO2 emissions. Accordingly, the objective that
includes the CO2 emissions from the conventional electricity grid is defined as follows:

OBJ2 = ∑
t

δξG(t)Pbuy(t) (12)

where ξG(t) is the CO2 intensity of the grid electricity at time t.
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Given these two objective functions, the problem is a combination of several single-objective
minimization problems with conflicting objectives regarding CO2 emissions and the electricity bill.
Various methods have been proposed to handle this conflict and trade-off. We convert the combination
of several objectives into a single object through a weighted sum approach using two factors, α and β,
where α, β ∈ [0, 1] is an (assigned) weight factor that tunes the desired trade-off between the cost of
CO2 emissions and the electricity bill (i.e., in this paper, we give the same weight to both objectives,
α = β).

OBJ = α ·OBJ1 + β ·OBJ2 (13)

For the RTP scheme, the objective is to minimize the total energy cost and CO2 emissions’ cost
under real-time electricity prices as shown in Equation (13), subject to Equations (1)–(9). For the PDC
scheme, the objective is to minimize CO2 emissions and the total daily CO2 cost together with the
extra cost charged for over-consumed electricity from the grid as shown in Equation (13), subject to
Equations (1)–(10). The problems belong to the class of MILP formulations. Therefore, we have relied
on solvers to find the solutions.

5. Performance Evaluation

In this section, we evaluate our proposed MILP model for scheduling energy (electricity)
consumption with several numerical evaluations.

5.1. Experimental Setup

To run the simulation, we use the CVX solver, the state-of-the-art Stanford optimizing solver,
running over MATLAB [38] on an Apple MacBook with a 2.6-GHz processor and 16-GB RAM to test
our model for a smart building with 30 different numbers of homes that do not share the same living
habits. Table 1 summarizes the appliance types and other features of households with 12 basic tasks
that consume electricity. To simplify, it is assumed that all tasks have constant power consumption
rates, despite in reality, for example, the dishwasher having a different power consumption rate.
These tasks can be scheduled according to their earliest starting time, latest finishing time, duration
and power requirements as presented in Table 1. All tasks have fixed power consumption rates.

Each building is equipped with a PV panel with a 10 kWe capacity and a maintenance cost of
0.5 p/kWhe. Each building also has one ESS with a 10 kWe capacity [32], 98% charge/discharge
efficiency, 20 kWth discharge and charge limits and a maintenance cost of 0.1 p/kWth. The grid
connection has the ability to import/export energy to/from the main grid. The real electricity tariff [39]
and CO2 intensity profiles [40] gathered from the U.K. for one day are shown in Figure 2. The real-time
electricity prices at different times collected from the Balancing Mechanism Reporting Service in [39]
are shown in Figure 2a, and the CO2 intensity rates for 15 January 2015 and 15 August 2015 are
presented in Figure 2b [40]. The planning horizon for both examples is from 00.00 a.m. one day
to 00.00 a.m. the next morning. From Figure 2, it can be seen that there is a conflict between CO2

emissions and the electricity tariff. For instance, in Hour 5 (summer), the electricity price is at its
lowest point, while the opposite is the case for CO2 emissions, which are at their peak point. Each time
interval is 30 min long; in total, we consider 48 time intervals for a single day.

We consider two electricity pricing schemes: the PDC scheme and the RTP scheme, and we
consider variations in CO2 intensity over time. For the peak demand charge tariff, the agreed-upon
threshold is 30 kWe [32]; the extra fee that must be paid above this threshold is 5 p/kWhe; and the
price for selling energy to the grid is 1 p/kWhe. For the RTP scheme, the objective is to minimize CO2

emissions and the total daily CO2 cost under real-time electricity prices as shown in Equation (13),
subject to Equations (1)–(9). For the PDC scheme, the objective is to minimize CO2 emissions and
the total daily CO2 cost together with the extra cost charged for over-consumed electricity from the
grid as shown in Equation (13), subject to Equations (1)–(10). We define several scenarios for the RTP
and PDC schemes: (i) macrogrid earliest starting time (ME); (ii) macrogrid optimized scheduling
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(MO); (iii) microgrid earliest starting time (mE); (iv) microgrid optimized scheduling (mO), using the
schemes PDC (P) and RTP (R) (e.g., RmO is the microgrid optimized scheduling scenario with the
scheme RTP) (for simplicity, ‘xyz’ is used as the abbreviation, where ‘x’ represents real-time price
scheme (R) or peak demand price scheme (P), ‘y’ represents the macrogrid (M) or microgrid (m)
and ‘z’ represents earliest starting time (E) or optimized scheduling (O)). Macrogrid (M) shows that
the electrical demand of the smart building is provided only by the main grid, whilst microgrid (m)
indicates that the building considers DER and the storage system. Furthermore, in the “earliest starting
time (E)” case, all appliances start operating as soon as they are available, whereas in the “optimized
scheduling (O)” case, the proposed optimized power profiles are followed. Moreover, we test these
scenarios on two days of the year: 15 January 2015 to represent the winter and 15 August 2015 to
represent the summer (see Figure 2). We run our MILP problem to schedule appliances for the two
different price schemes to simultaneously optimize CO2 emissions and the electricity bill.

Time (hour)
00.00 2.30 5.00 7.30 10.00 12.30 15.00 17.30 20.00 22 24.00

E
le
ct
ri
ci
ty

P
ri
ce

(£
/
k
W

h
)

20

30

40

50

60

70

80
Summer (15 August)
Winter (15 January)

(a) Electricity Price

Time (hour)
00.00 2.30 5.00 7.30 10.00 12.30 15.00 17.30 20.00 22 24.00

C
O

2
E
m
is
si
on

(g
/
k
W

h
)

300

350

400

450

Summer (15 August)
Winter (15 January)

(b) CO2 Emissions

Figure 2. Electricity tariff and CO2 emissions for the U.K. city of Bristol for the summer (15 August 2015;
continuous line) and winter (15 January 2015; dashed line).

5.2. Performance Results

In this subsection, we simulate our model for heterogeneous living habits.
For the first test, we run the solver and evaluate the resulting electrical power usage for the

aforementioned scenarios. The optimal electricity balance cost for a day under the RTP scheme
is shown in Figure 3. Hence, based on the numerical tests carried out, we have determined that:
(i) the electricity cost (power) decreases using the solver for the optimization scenarios (see Figure 3b,d),
and this rate is even higher with more components (Figure 3d) as the microgrid scenario is applied;
and (ii) the solution can respond to the electricity demand using its storage, and even the rate of
electricity that is sold is significant compared to the consumer demand (see the light blue bars in
Figure 3d).

Based on the given task operation time window in Table 1, most of the appliance start times are in
the slots between 8:00 and 9:00 and between 18:00 and 19:00. Therefore, we have peaked during these
time intervals, which can be deduced from Figure 3a,c. On the other hand, by using the optimization
scheme (see Figure 3b,d), the electricity demand curves are made smoother than they are for the
scheme without optimization (see Figure 3a,c). For the optimization scheme, the scheduler tries to
move the execution of the demands with high electricity prices [39] and CO2 emissions [40] (8:00 and
18:00 in Figure 2a,b) to the lowest slots. Moreover, in the microgrid scenario, there is more energy from
the PV between 12:00 and 16:00, and it can be seen from Figure 3d that in this time interval, there is a
peak in the demand curve.
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Figure 3. Thirty homes: electricity balance cost under the real-time price (RTP) scheme for one day
in the summer. (a) RME: macrogrid earliest starting time scenario; (b) RMO: macrogrid optimized
scheduling scenario; (c) RmE: microgrid earliest starting time scenario; (d) RmO: microgrid optimized
scheduling scenario.

The optimal electricity balance cost for a day under the PDC scheme is shown in Figure 4.
A significant point can be understood by comparing Figures 3 and 4: when we apply the PDC
scheme, the total energy cost in each scenario is higher than under the RTP scheme. When there is
an extra charge for the over-consumed electricity from the grid, the peak demand is reduced through
optimization. Figure 4 shows that under the PMO scenario, the tasks are scattered according to the
peak demand extra charges. The total cost for the PME scenario is around 1.5 M£, but it decreases to
0.9 M£ when the optimized scheduling is applied in the PMO scenario and the peak demand from the
grid is reduced from 300.4–192.6 kW. There are still peaks in the early morning and evening that cannot
be avoided, mainly because of the inflexible time window requirement for specific tasks. This happens
even in the PmO scenario (see Figure 4d), but we can declare that the electricity demand makes the
plot smoother. Under the microgrid scenarios, the total cost is reduced to 0.6 M£in the PmO scenario,
and the peak demand from the grid is reduced from 300.4 kW in the PmE scenario to 126.3 kW in the
PmO scenario.

For the third test, we compared the total costs, the electricity bought and sold and the CO2 costs
for the scenarios under the RTP and PDC schemes for two seasons: summer and winter. Note that
the yellow bars indicate the electricity that is sold to the grid, which yields a negative cost (revenue).
The results of this comparison are presented in Figures 5 and 6. Based on these figures, we conclude
that the total energy cost, CO2 emissions and imported electricity can be reduced by scheduling the
appliances and exploiting the DERs. As shown, the total energy cost and imported electricity from the
grid in the ‘m’ scenarios have been reduced significantly compared to the ‘M’ scenarios, which do not
have DERs. Moreover, in the ‘O’ scenarios, there is more cost saving than in the ‘E’ scenarios and less
demand from the grid due to the scheduling. As a result, the ‘ME’ scenarios are the most expensive
scheduling plan, since we used neither the optimized solution nor DERs.
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Figure 4. Thirty homes: electricity balance cost under the peak-demand charge (PDC) scheme for one
day in the summer. (a) PME: macrogrid earliest starting time scenario; (b) PMO: macrogrid optimized
scheduling scenario; (c) PmE: microgrid earliest starting time scenario; (d) PmO: microgrid optimized
scheduling scenario.

For the fourth test, we aimed to analyse the cost of each scenario and its savings, as well as
to understand the peak/total demands in the RTP and PDC schemes. Tables 2 and 3 present these
outcomes. Specifically, Table 2 presents the peak/total demands with the total costs for the different
scenarios in the winter and the summer for the U.K. data profiles. As indicated by the results in Table 2,
we also tested the MILP problem using various thresholds (Pth) for the peak demands (see Equation (8)).
We can see from Table 2 that: (i) when Pth increases, the total demand for the threshold decreases for
all peak demand scenarios, which confirms the constraints in Equation (9); in other words, the PDC
price scheme targets minimizing the maximum power demand from the grid (kW); (ii) the maximum
power demand from the grid is reduced while the total demand from the grid including the threshold
is also reduced; in this case, the stress the smart home’s place on the grid is decreased; and (iii) when
the PDC scenarios change from the ‘E’ mode to the ‘O’ mode, the total demand over the threshold
savings increases, and they also increase when MGs are utilized.

Comparing the scenarios where all tasks start at their earliest possible starting time (i.e., scenarios
with the ‘E’ mode), it is obvious that savings increase through task starting time scheduling in both
examples under the RTP and PDC pricing schemes. Compared with the earliest starting time scenarios,
the cost savings and total peak demand savings from the grid over the earliest starting scenarios
by scheduling task starting times are presented in Table 3 for the different scenarios. In the RTP
scheme, the two seasons have similar cost savings, while under the PDC scheme, the summer season
demonstrates more cost savings, which was expected from Figure 2. Table 3 shows that for all scenarios,
the winter season has a higher percentage of cost savings from the grid. In both seasons, when a
microgrid is utilized, the lowest percentage of cost savings is 48% and the lowest percentage of peak
demand savings is 58%. Thus, use of a microgrid is an important alternative solution for reducing costs
and peak demands. Table 3 also shows that there are peak demand savings even when only the RTP
scheme is used. However, the peak demands are accidentally reduced in that case, as the reduction
results from the optimized task starting time schedule based on electricity’s RTP. When the PDC
scheme is used, the total peak demands from the grid are minimized through the objective function,
which provides similar savings for both seasons. In a nutshell, it is evident that the proposed MILP
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model can offer significant cost savings and peak demand savings with very modest computational
complexity for smart buildings.

Finally, the model statistics for the microgrid-optimized scheduling scenarios under the
two pricing schemes are presented in Table 4 for the two seasons, and the consumed CPU time
is also presented. We can see that applying PDC with an optimality gap of 0.1% for the scheduling
scenarios RmO and PmO in the summer season requires 7.6 CPU s and 8.0 CPU s, respectively.

Table 2. Peak demand from the grid and total electricity for two price schemes and three thresholds
(Pth = {30, 60, 90}); TC: total cost; PD: peak demand; TD: total demand; TDo: total demand
over thresholds.

Scenarios TC (£) PD (kW) TD (kWh) TDo Pth{1} (kWh) TDo Pth{2} (kWh) TDo Pth{3} (kWh)

Su
m

m
er

RME 1.021 × 106 302 3.2513 × 103 - - -
RMO 5.575 × 105 112 2.7216 × 103 - - -
RmE 1.020 × 106 301.2 3.2513 × 103 - - -
RmO 3.595 × 105 81.3 0.9616 × 103 - - -
PME 1.22 × 106 301.2 3.2513 × 103 3.0808 × 103 2.6571 × 103 2.2084 × 103

PMO 7.9364 × 105 192.6 2.0732 × 103 1.6832 × 103 1.4364 × 103 1.2016 × 103

PmE 1.613 × 106 300.3 3.2513 × 103 3.0808 × 103 2.6571 × 103 2.2084 × 103

PmO 5.861 × 105 126.3 1.5016 × 103 1.3816 × 103 1.0782 × 103 0.5261 × 103

W
in

te
r

RME 1.32 × 106 301 3.2513 × 103 - - -
RMO 6.804 × 105 111 2.7216 × 103 - - -
RmE 1.31 × 106 301.2 3.2513 × 103 - - -
RmO 3.595 × 105 81.3 0.9616 × 103 - - -
PME 1.622 × 106 300.4 3.2513 × 103 3.0808 × 103 2.6571 × 103 2.2084 × 103

PMO 9.6703 × 105 192.6 2.0732 × 103 1.6832 × 103 1.4364 × 103 1.2016 × 103

PmE 1.613 × 106 300.4 3.2513 × 103 3.0808 × 103 2.6571 × 103 2.2084 × 103

PmO 8.356 × 105 126.3 1.7851 × 103 1.3816 × 103 1.0782 × 103 0.5261 × 103

Table 3. Comparisons between optimized scenarios and their corresponding non-optimized scenarios
in cost and peak demand savings.

Scenarios Cost Savings (%) Peak Demand Savings (%)

Summer

RM(E-O) 45 62
Rm(E-O) 64 73
PM(E-O) 34 63
Pm(E-O) 63 58

Winter

RM(E-O) 47 63
Rm(E-O) 72 73
PM(E-O) 40 62
Pm(E-O) 48 58

Table 4. Execution statistics for the CVX model.

Scenarios CPU (s)

Summer

RMO 7.1
RmO 7.6
PMO 7.4
PmO 8.6

Winter

RMO 8.0
RmO 9.0
PMO 10
PmO 8.6



Energies 2018, 11, 1348 14 of 17

Scenarios

RWmO RWmE RWMO RWME RSmO RSmE RSMO RSME

C
o
st

(£
)

×10
5

-2

0

2

4

6

8

10

12

14 Total Buy from Grid CO2 Sell to Grid x 104

Figure 5. Cost comparisons between the optimized and non-optimized scenarios for the real-time
price scheme.
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Figure 6. Cost comparisons between the optimized and non-optimized scenarios with a threshold of
30 for the peak demand price scheme.

6. Conclusions and Future Directions

In this work, a smart building with 30 homes in which user preferences and various types
of appliances are considered has been used as an illustration to study the performance of the
proposed optimization-based framework. An MILP-based model with three objectives was presented:
minimizing the total emission cost, the total electricity cost and the peak demand charge. The building
has its own microgrid (PV and ESS) to locally generate energy. As a consequence, when the electricity
tariff and CO2 emissions are in peak periods, the scheduler tries to shift domestic appliances into the
slots with the lowest price and CO2 densities based on their operation time windows. In addition,
the uncertainty inherent in PV generation and two different price tariffs (RTP and PDC) were taken
into account. Different scenarios were simulated in order to demonstrate the effectiveness of the
proposed scheduling model, and the results for the different scenarios were analysed and compared.
The simulation results demonstrated from both economic and environmental perspectives that the
proposed home energy management model results in a lower total cost and CO2 emissions cost and
also has the ability to shave the peak demand. An interesting outlook is to study the microgrid
economic dispatching problem under various noisy predictions of future demand and renewable
generation within a limited look-ahead window.

Supplementary Materials: The Source code of the paper is available at www.mdpi.com/1996-1073/11/6/1348/s1,
To be precise, the required information for the PV/CO2 for various scenarios are the same name using csv format at
which is extracted in txt format. The file cvx_Zahra_Smartgrid_differentload_dishwasher_updated_mutipleMM.m:
The main file. Note that, to run the program you are requested to install Matlab and CVX toolbox. Also, The
folders reflects the homogeneous and heterogeneous smart home scenario and their results.

www.mdpi.com/1996-1073/11/6/1348/s1
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Nomenclature

Binary Variables
Eji(t) task i status of home j at time t
Indices
i ask number
j home number in the smart building
t time interval
Parameters
α weighting factor of the multi-objective function
β weighting factor of the multi-objective function
δ time interval duration h
λESS charge/discharge efficiency of the energy storage system
ξG(t) CO2 intensity of the grid electricity at time t (kg CO2/kWhe)
Cbuy real-time price for buying electricity from the grid at time t (£/kWhe)
CED the difference between peak and base electricity demand price from the grid (£/kWhe)
COM,ESS operation and maintenance cost of the energy storage system (£/kWhe)
COM,PV operation and maintenance cost of photovoltaic panels (£/kWhe)
Csell real-time price for selling electricity to the grid at time t (£/kWhe)
ETji latest finishing time of task i in home j
MCESS energy storage system capacity (kWhe)
MDESS energy storage system discharge limit (kWe)
Pji processing time of task i in home j
Pth agreed electricity peak demand threshold from the grid (kWe)
STji earliest starting time of task i in home j
Variables
len length of the load profile of an appliance
OBJ1 daily electricity cost of a home (£)
OBJ2 daily CO2 emissions (kg CO2)
PC

ESS(t) energy storage system charge rate at time t (kWe)
PD

ESS(t) energy storage system discharge rate at time t (kWhe)
Pbuy(t) electrical power bought from the grid at time t (kWe)
PED(t) extra electrical load from the grid over the agreed threshold value (kWe)
PESS(init) initial state of the energy storage system (kWe)
PESS(t) electricity in the energy storage system at time t (kWe)
PPV(R) generated power by PV with solar irradiance R (kW)
Pr,PV rated power of PV (kW)
R solar irradiance (W/m2)
Rc certain radiation point, usually set to 150 W/m2

RSTD solar radiation in the standard conditions, usually set to 1000 W/m2
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