PRIN 2022 project: Mathematical models for viscoelastic biological matter
The increased availability of experimental data on the mechanics of cells and tissues has stimulated the emergence of the field of mechanobiology, in which mathematics and mechanics are combined to enhance our understanding of biological materials and of the processes involved in physiological activities. The development of mathematical models for such complex systems is challenging, but the possible outcomes in terms of our capability to diagnose and treat pathological conditions provide a strong motivation for pursuing this research direction.
The present project focuses on continuum mechanical models and on a careful analysis of their mathematical properties, with particular emphasis on the description of activation processes. These are important for the control of any physiological activity, as they bring to life what would otherwise be a passive aggregate of heterogeneous substances. Among the many active elements of the human body, we restrict attention to skeletal muscles and neuronal cells, as they feature a rich phenomenology.
The planned research includes both applied and theoretical aspects. On the practical side, its outcomes can open new possibilities in the context of digital twins for personalized medicine. On the mathematical side, a new class of models can stimulate studies of broad interest in continuum mechanics and analysis.
Research Units
Unversità degli Studi di Padova
Giulio G. Giusteri (National Coordinator), Sara Galasso (Postdoc), Silvia Paparini (Postdoc), Francesca Berlinghieri (PhD student)
Università Cattolica del Sacro Cuore
Giulia Giantesio (Local Coordinator), Alessandro Musesti, Alfredo Marzocchi, Francesco Ballarin, Alberto Girelli (Postdoc)
Politecnico di Milano
Davide Riccobelli (Local Coordinator), Pasquale Ciarletta
Upcoming Workshop
Mathematics and Mechanics of Biological Tissues, Padova, June 16-18, 2025
Publications
M. A. H Alrashdi, G. G. Giusteri.
Evolution of local relaxed states and the modeling of viscoelastic fluids, Phys. Fluids 36, 093129 (2024) doi:10.1063/5.0224019.
D. Riccobelli, P. Ciarletta, G. Vitale, C. Maurini, L. Truskinovsky.
Elastic instability behind brittle fracture, Phys. Rev. Lett., 132(24), 248202 (2024), doi:10.1103/PhysRevLett.132.248202
N. A. Barnafi, N. F. Regazzoni, D. Riccobelli.
Reconstructing relaxed configurations in elastic bodies: Mathematical formulations and numerical methods for cardiac modeling, Comput. Methods Appl. Mech. Eng., 423, 116845 (2024), doi:10.1016/j.cma.2024.116845
M. Magri, D. Riccobelli.
Modelling of initially stressed solids: structure of the energy density in the incompressible limit, SIAM J. Appl. Math. 84(6), 2342-2364 (2024), doi:10.1137/24M1670226
A. Girelli, G. Giantesio, A. Musesti, R. Penta.
Multiscale homogenization for dual porosity time-dependent Darcy–Brinkman/Darcy coupling and its application to the lymph node, Royal Society Open Science, 11(7), 231983 (2024) doi:10.1098/rsos.231983
A. Girelli, G. Giantesio, A. Musesti and R. Penta.
Multiscale computational analysis of the steady fluid flow through a lymph node, BMMB, Vol. 23, pp 2005–2023 (2024). doi:10.1007/s10237-024-01879-7
G. Ciampa, G. G. Giusteri, A. G. Soggiu.
Viscoelasticity, logarithmic stresses, and tensorial transport equations, Math. Meth. Appl. Sci. 48(3), 2934-2953 (2025) doi:10.1002/mma.10469.
A. Girelli.
A quasilinear hyperbolic one-dimensional model of the lymph flow through a lymphangion with valve dynamics and a contractile wall, CMBBE. doi:10.1080/10255842.2024.2399769
G. Giantesio, A. Musesti.
On the Modeling of Active Deformation in Biological Transversely Isotropic Materials, Journal of Elasticity, 157(1), 10 (2025) doi:10.1007/s10659-024-10101-9