Publications and Preprints

    Google Scholar profile
    Mathscinet profile

  1. Derksen-Weyman-Zelevinsky mutations of infinite-dimensional modules I: Foundations.
    44 pages.
    arXiv:2508.21757

  2. Bangle functions are the generic basis for cluster algebras from punctured surfaces with boundary.
    With C. Geiss and Jon Wilson. 44 pages.
    arXiv:2310.03306

  3. Gentle algebras arising from surfaces with orbifold points, Part II: Locally free Caldero-Chapoton functions.
    With Lang Mou. 47 pages.
    arXiv:2309.16061

  4. Laminations of punctured surfaces as 𝝉-reduced irreducible components.
    With C. Geiss and Jon Wilson. 42 pages.
    arXiv:2308.00792

  5. On the resolution of kinks of curves on punctured surfaces.
    With C. Geiss. 24 pages.
    Accepted for publication by Algebraic and Geometric Topology.
    arXiv:2307.11376

  6. Semilinear clannish algebras associated to triangulations of surfaces with orbifold points: Oberwolfach talk, February 2023.
    Based on joint work with Raphael Bennett-Tennenhaus. 4 pages.
    arXiv:2303.05964

  7. Semilinear clannish algebras arising from surfaces with orbifold points.
    With Raphael Bennett-Tennenhaus. 45 pages.
    arXiv:2303.05326

  8. Semicontinuous maps on module varieties.
    With C. Geiss and Jan Schröer. 17 pages.
    Accepted for publication by Crelle's Journal.
    arXiv:2302.02085

  9. Landau-Ginzburg potentials via projective representations.
    With Bea de Laporte (formerly Bea Schumann). 27 pages.
    Accepted for publication by Journal of Combinatorial Algebra.
    arXiv:2208.00028

  10. Gentle algebras arising from surfaces with orbifold points of order 3, Part I: scattering diagrams.
    With Lang Mou. 44 pages.
    Algebras and Representation Theory https://doi.org/10.1007/s10468-023-10233-x
    arXiv:2203.11563

  11. Quivers with potentials associated to triangulations of closed surfaces with at most two punctures.
    With Jan Geuenich and José Luis Miranda-Olvera. 21 pages.
    Séminaire Lotharingien de Combinatoire, B84c (2022).
    arXiv:2008.10168

  12. Generic Caldero-Chapoton functions with coefficients and applications to surface cluster algebras.
    With C. Geiss and Jan Schröer. 45 pages.
    arXiv:2007.05483

  13. Derived categories of skew-gentle algebras and orbifolds.
    With Sibylle Schroll and Yadira Valdivieso. 26 pages.
    Glasgow Mathematical Journal, First View (2022), pp. 1-26 DOI: https://doi.org/10.1017/S0017089521000422
    arXiv:2006.05836

  14. Schemes of modules over gentle algebras and laminations of surfaces.
    With C. Geiss and Jan Schröer. 78 pages.
    Selecta Mathematica (New series) 28, 8 (2022). https://doi.org/10.1007/s00029-021-00710-w
    arXiv:2005.01073

  15. On a family of Caldero-Chapoton algebras that have the Laurent phenomenon.
    With Diego Velasco. 46 pages.
    Journal of Algebra, Volume 520 (2019), 90-135. https://doi.org/10.1016/j.jalgebra.2018.11.012
    arXiv:1704.07921

  16. Species with potential arising from surfaces with orbifold points of order 2, Part II: arbitrary weights.
    With Jan Geuenich. 104 pages.
    International Mathematics Research Notices, Volume 2020 (2020), Issue 12, 3649-3752. doi:10.1093/imrn/rny090
    arXiv:1611.08301

  17. Derived invariants for surface cut algebras II: the punctured case.
    With Claire Amiot and Pierre-Guy Plamondon. 37 pages.
    Communications in Algebra.Communications in Algebra, DOI: 10.1080/00927872.2020.1797066
    arXiv:1606.07364

  18. Species with potential arising from surfaces with orbifold points of order 2, Part I: one choice of weights.
    With Jan Geuenich. 79 pages.
    Mathematische Zeitschrift Volume 286 (2017), Issue 3-4, 1065-1143.
    DOI:10.1007/s00209-016-1795-6
    arXiv:1507.04304

  19. Strongly primitive species with potentials: aims and limitations.
    Based on joint work with Andrei Zelevinsky. 4 pages.
    European Mathematical Society.
    Oberwolfach Reports Volume 10, Issue 4 (2013). 3404-3407.
    (Report No. 58/2013, DOI: 10.4171/OWR/2013/58)
    arXiv:2302.13504

  20. The representation type of Jacobian algebras.
    With C. Geiss and Jan Schröer. 89 pages.
    Advances in Mathematics, Vol. 290 (2016), 364-452.
    doi:10.1016/j.aim.2015.09.038
    arXiv:1308.0478

  21. Strongly primitive species with potentials I: Mutations.
    With Andrei Zelevinsky. 69 pages.
    Boletín de la Sociedad Matemática Mexicana (Third Series), Vol. 22 (2016), Issue 1, 47-115.
    DOI 10.1007/s40590-015-0063-9
    arXiv:1306.3495

  22. On triangulations, quivers with potentials and mutations.
    25 pages.
    Contemporary Mathematics (American Mathematical Society), Vol. 657 "Mexican Mathematicians Abroad: Recent Contributions" (Bárcenas, Galaz-García, Moreno Rocha, Eds.), 2016. 103-127.
    DOI: http://dx.doi.org/10.1090/conm/657/13092
    arXiv:1302.1936

  23. Caldero-Chapoton algebras.
    With Giovanni Cerulli Irelli and Jan Schröer. 36 pages.
    Transactions of the American Mathematical Society 367 (2015), 2787-2822.
    arXiv:1208.3310

  24. Quivers with potentials associated to triangulated surfaces, part IV: Removing boundary assumptions.
    45 pages.
    Selecta Mathematica (New series), Vol. 22 (2016), Issue 1, 145-189 .
    DOI: 10.1007/s00029-015-0188-8
    arXiv:1206.1798

  25. Linear independence of cluster monomials for skew-symmetric cluster algebras.
    With Giovanni Cerulli Irelli, Bernhard Keller and Pierre-Guy Plamondon. 12 pages.
    Compositio Mathematica 149 (2013), No. 10, 1753-1764.
    arXiv:1203.1307

  26. Quivers with potentials associated to triangulated surfaces, part III: Tagged triangulations and cluster monomials.
    With Giovanni Cerulli Irelli. 34 pages.
    Compositio Mathematica 148 (2012), No. 06, 1833-1866.
    arXiv:1108.1774

  27. Quivers with potentials associated to triangulated surfaces, part II: Arc representations.
    52 pages.
    arXiv:0909.4100

  28. Cones and convex bodies with modular face lattices.
    With Max Neumann-Coto and Martha Takane. 14 pages.
    Proceedings of the American Mathematical Society 140 (2012), 4337-4350.
    arXiv:0903.0643

  29. Quivers with potentials associated to triangulated surfaces.
    43 pages.
    Proceedings of the London Mathematical Society (2009) 98 (3): 797-839.
    arXiv:0803.1328

  30. Quivers with potentials associated with triangulations of Riemann surfaces.
    Ph.D. thesis. 245 pages. December 2010.
    Department of Mathematics, Northeastern University. Boston, Massachusetts, USA.
    Thesis advisor: Andrei Zelevinsky.