Back to "Padova-Verona research group on Constructive Approximation and Applications" (CAA) Home Page

Mathematical Imaging in Medicine and Neurosciences


This multidisciplinary group aims to construct new tools for Imaging and Image-derived Neurological data analysis, with focus on numerical methods and error estimation. These tool are meant to be applied in MRI, PET, SPECT imaging in clinical research or as a support for clinical practice.

People: S. De Marchi, D. Cecchin, D. Poggiali, C. Campi, F. Marchetti, W. Erb and P. Gallo.

Papers

  1. A discrepancy principle for the Landweber iteration based on risk minimization
    F. Benvenuto, C. Campi - Applied Mathematics Letters 96 (2019) 1-6.
  2. Automated Definition of Skeletal Disease Burden in Metastatic Prostate Carcinoma: A 3D Analysis of SPECT/CT Images
    F. Fiz, H. Dittmann, C. Campi, M. Weissinger, S. Sahbai, M. Reimold, A. Stenzi, M. Piana, G. Sambuceti, C. la Fougere - Cancers 11 (2019), 869
  3. An automated PET/CT brain segmentation for regional amyloid semi-quantification
    submitted draft, with D. Poggiali, S. de Marchi, L Ruffini, P Caffarra, H. Barthel, O. Sabri, F. Bui, D. Cecchin.
  4. Lissajous sampling and spectral filtering in MPI applications: the reconstruction algorithm for reducing the Gibbs phenomenon
  5. F. Marchetti, S. De Marchi and W. Erb - IEEE Conference Publications - 2017 International Conference on Sampling Theory and Applications (SampTA), 580--584
  6. Spectral filtering for the reduction of the Gibbs phenomenon for polynomial approximation methods on Lissajous curves with applications in MPI
    F. Marchetti, S. De Marchi and W. Erb - Dolomites Res. Notes Approx. 10 (2017), 128--137
  7. Image Reconstruction from Scattered Radon Data by Weighted Positive Definite Kernel Functions
    draft, S. De Marchi, A. Iske and G. Santin, Calcolo 55(2) (2018), https://doi.org/10.1007/s10092-018-0247-6.
  8. Kernel-based Image Reconstruction from Scattered Radon Data
    by S. De Marchi, A. Iske and A. Sironi
    Dolomites Res. Notes on Approx. Vol 9 (2016), special issue for the workshop "Kernel-based methods and function approximation", pp. 19-31.
    available as Hamburger Beitraege zur Angewandten Mathematik 2016-11
  9. Analytical and experimental FWHM of a gamma camera: theoretical and practical issues
    D. Cecchin, D. Poggiali, L. Riccardi, P. Turco, F. Bui, S. De Marchi, PeerJ (2015), https://doi.org/10.7717/peerj.722.

Presentations

  1. F. Marchetti, S. De Marchi, E. Perracchione, Reconstruction of Images with Discontinuities via Variably Scaled Discontinuous Kernels: Applications to MPI, MASCOT2018 - 15TH Meeting On Applied Scientific Computing And Tool Rome, Italia, 2-5/10/2018.
  2. D. Poggiali, S. De Marchi, D. Cecchin, A Kinetic Neural Network Approach for Absolute Quantification and Change Detection in Positron Emission Tomography, MASCOT2018 - 15TH Meeting On Applied Scientific Computing And Tool Rome, Italia, 2-5/10/2018.
  3. C. Campi, Pattern recognition in X-ray CT and PET images, MASCOT2018 - 15TH Meeting On Applied Scientific Computing And Tool Rome, Italia, 2-5/10/2018.
  4. C. Campi, Segmentation of X-ray Computed Tomography images by means of Hough transform, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, University of Modena and Reggio Emilia, 15/05/2018.
  5. C. Campi, Generalized Hough transform for segmentation of X-ray Computed Tomography images, Dipartimento di Matematica, University of Roma La Sapienza, 15/01/2018.
  6. C. Campi, Image processing for the investigation of glucose metabolism in patients of ALS, SIAM Conference on Imaging Science Bologna, Italia, 5-8/6/2018.
  7. C. Campi, A novel machine learning approach to solar flare prediction, SPAN18, Padova, Italy, May 3 - May 4 2018
  8. D. Poggiali, Interpolating the Image-Derived Input Function in PET/MRI: a statistical maximization approach, SPAN18, Padova, Italy, May 3 - May 4 2018
  9. F. Marchetti, Polynomial and RBF approximation on Lissajous nodes in MPI applications, SPAN18, Padova, Italy, May 3 - May 4 2018
  10. S. De Marchi, W. Erb, F. Marchetti, Lissajous sampling and adaptive spectral filtering for the reduction of the Gibbs phenomenon in Magnetic Particle Imaging (MPI), Bernried, 27 Feb. - 3 Mar. 2017
  11. D. Poggiali The numb3rs 0f a Br4in, Istituto per le Applicazioni del Calcolo (IAC), CNR, Rome, 04/2016.
  12. D. Poggiali, Data Analysis in MRI and PET/MRI Neuroimaging pyconIE2016, Dublin, Ireland. video link
  13. S. De Marchi, Kernel-based Image Reconstruction from scattered Radon data by (anisotropic) positive definite functions, Torino, 5/2/2016
  14. D. Poggiali, Resolution of a Gamma camera: Analytical vs Experimental methods, CAE 2013, Pacengo del Garda VR.
  15. D. Poggiali, MS lesion segmentation in MR image: a multithresholding approach, Ca' Foscari VE, 2014.

Posters

PhD/MD theses

Master theses

Short Degree theses

Software