Università degli Studi di Padova

Regularity problems in sub-Riemannian structures (n. 2022F4F2LH)

Type

PRIN 2022, D.D. n. 104 del 2 febbraio 2022


CUP

C53D23002450006


Principal Investigator

Giovanna Citti (Università degli Studi di Bologna)


Other research units

UO1 - Giovanna CITTI - Università degli Studi di BOLOGNA

UO2 - Roberto MONTI - Università degli Studi di PADOVA

UO3 - Francesco SERRA CASSANO - Università degli Studi di TRENTO


Duration

28/09/2023 - 31/12/2025


Description

This research project focused on the theory of minimal surfaces in the

Heisenberg group. One of the most important open problems in this field

is the regularity of H-minimal surfaces.

With Giacomo Vianello, postdoc financed by the Prin, we obtained results

related to the existence, structure, and regularity of solutions to the

Plateau problem in the first Heisenberg group.

The setting is the one of intrinsic graphs defined on a convex domain D

of a vertical plane. The theory holds depending on a smallness

condition either on the boundary of D or on the boundary datum phi. The

core of the proof relies on a calibration argument.

The techniques can be used to establish new regularity results for

H-perimeter minimizers.