![]() |
Fabio AiolliAssistant Professor
Research and Publications |
International
Journals and Conference Proceedings |
|
M. Donini, F. Aiolli | Learning Deep Kernels in the space of dot-product polynomials Machine Learning (2016) |
M. Ciman, M. Donini, O. Gaggi, F. Aiolli | Stairstep recognition and counting in a serious game for increasing users' phisical activity Personal and Ubiquitous Computing (2016) |
L. Oneto, N. Navarin, M. Donini, F. Aiolli, D. Anguita | Advanced in learning with kernels: theory and practice in a world of growing constraints ESANN 2016, Bruges (Belgium) |
L. Oneto, N. Navarin, M. Donini, A. Sperduti, F. Aiolli, D. Anguita | Measuring the expressiveness of graph kernels through the Rademacher complexity ESANN 2016, Bruges (Belgium) |
M. Polato, F.Aiolli | Kernel based Collaborative Filtering for very large scale top-N item recommendation ESANN 2016, Bruges (Belgium) |
F. Aiolli, M. Donini, N. Navarin, A. Sperduti | Multiple Graph Kernel Learning SSCI 2015, Cape Town (South Africa) |
F. Aiolli, M. Donini | EasyMKL: a scalable multiple kernel learning algorithm Neurocomputing (2015) |
V. Bolon Canedo, M. Donini, F. Aiolli | Feature and kernel learning Proceedings of ESANN 2015 (Bruges, BE) |
F. Aiolli, M. Ciman, M. Donini, O. Gaggi | ClimbTheWorld: Real-time stairstep counting to increase physical activity Proceedings of the 11th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, 2014 |
F. Aiolli | Convex AUC Optimization for Top-N Recommendation with Implicit Feedback Proceedings of the ACM RecSys 2014 (Sylicon Valley, USA) |
F. Aiolli, G. Da San Martino, A. Sperduti | An Efficient Topological Distance-based Tree Kernel IEEE Transaction on Neural Networks and Learning Systems (2014) |
F. Aiolli, M. Donini | Learning Anisotropic RBF Kernels Proceedings of ICANN 2014 (Hamburg, GE) |
F. Aiolli, M. Donini | Easy Multiple Kernel Learning Proceedings of ESANN 2014 (Bruges, BE) |
F. Aiolli | Efficient Top-N Recommendation for Very Large Scale Binary Rated Datasets Proceedings of the ACM RecSys 2013 (Hong Kong, CH) |
F. Aiolli, M. Donini, E. Poletti, E. Grisan | Stacking Models for Efficient Annotation of MR Volumes Proceedings of MEDICON 2013 (Siviglia, SP) |
F. Aiolli | A Preliminary Study on a Recommender System for the Million Song Dataset Challenge Proceedings of IIR 2013, 73-83 (Pisa, IT) |
F. Aiolli | Transfer Learning by Kernel Meta-Learning Journal of Machine Learning Research W&CP, 27:81-95, 2012 (Pascal2 Best Challenge Paper Award) |
T. Sanavia, F. Aiolli, G. Da San Martino, A. Bisognin, B. Di Camillo | Improving biomarker list stability by integration of biological knowledge in the learning process BMC Bioinformatics, vol. 13(4), 2012. |
F. Aiolli, G. Da San Martino, A. Sperduti | Extending Tree Kernels with Topological Information Proceedings of the ICANN Conference, 2011: 142-149 |
F. Aiolli, A. Burattin, A. Sperduti | A Business Process Metric Based on the Alpha Algorithm Relations Business Process Management Workshops (1) 2011, 141-146 |
F. Aiolli, M. Giollo | A Study on the Writer Identification Task for Paleographic Document Analysis Proceedings of the 11th IASTED International Conference on Artificial Intelligence and Applications (AIA), 2011 |
F. Aiolli, G. Da San Martino, A. Sperduti | A New Tree Kernel Based on SOM-SD Proceedings of the International Conference on Artificial Neural Networks (ICANN), vol. 2, p. 48-58, 2010 |
F. Aiolli, C.E. Palazzi | Enhancing Artificial
Intelligence on a Real Mobile Game International Journal of Computer Games Technology (special issue on Artificial Intelligence for Computer Games), 2009. |
F. Aiolli, G. Da San Martino, M. Hagenbuchner, A. Sperduti | Learning Nonsparse Kernels by Self-Organizing Maps for Structured Data IEEE Transactions on Neural Networks, vol. 20, p. 1938-1949, 2009. |
F. Aiolli, M. De Filippo, A. Sperduti | Application of the Preference Learning Model to a Human Resource Selection Task Proceedings of the Symposium on Computational Intelligence and Data Mining (CIDM), 2009 |
F. Aiolli, G. da San Martino, A. Sperduti | Route Kernels for Trees Proceedings of the International Conference on Machine Learning (ICML), 2009 |
F. Aiolli, A. Sperduti | Supervised Learning as Preference Optimization Proceedings of the European Symposium on Artificial Neural Networks (ESANN), 2009 |
.F. Aiolli, R. Cardin, F. Sebastiani, A. Sperduti | Preferential Text
Classification: Learning Algorithms and Evaluation Measures Information Retrieval, 2008. |
F. Aiolli, G. Da San Martino, A. Sperduti | A Kernel Method for the Optimization of
the Margin Distribution Proceedings of the ICANN Conference, Praga 2008. |
F. Aiolli, C. E. Palazzi | Enhancing Artificial
Intelligence in Games by Learning the Opponent's Playing Style Proceedings of the IFIP-ECS Conference, Milano 2008 |
F. Aiolli, F. Sebastiani, A. Sperduti | Preference Learning for
Category-Ranking based Interactive Text Categorization Proceedings of the IJCNN Conference, Orlando (USA) 2007 |
F. Aiolli, G. Da San Martino, M. Hagenbuchner, A. Sperduti | "Kernelized" Self
Orginizing Maps for Structured Data Proceedings of the ESANN Conference, Bruges 2007 |
F. Aiolli, G. Da San Martino, A. Moschitti, A. Sperduti | Efficient Kernel-based
Learning for Trees Proceedings of the CIDM Conference, Honolulu Hawaii 2007 |
F. Aiolli, G. Da San Martino, A. Moschitti, A. Sperduti | Fast On-line
Kernel
Learning for Trees Proceedings of the ICDM Conference, Hong Kong 2006 |
F. Aiolli, A. Sperduti | Multiclass
Classification with Multi-Prototype Support Vector Machines Journal of Machine Learning Research, 6(May) 2005 - pages 817-850. |
F. Aiolli | A
Preference Model for Structured
Supervised Learning Tasks Proceedings of the ICDM Conference, New Orleans (Louisiana, USA) 2005 (Long Version) |
F. Aiolli, A. Sperduti | Learning
Preferences for Multiclass Problems Proceedings of the NIPS Conference, Vancouver Canada 2004. |
F. Aiolli, A. Sperduti | Multi-prototype
Support Vector Machines Proceedings of the IJCAI Conference, Acapulco Mexico 2003. |
F. Aiolli, F. Portera, A. Sperduti | Speeding
up the solution of multi-label problems with Support Vector Machines Supplementary Proceedings of the ICANN/ICONIP Turkey, 2003. |
F. Aiolli, A. Sperduti | A
re-weighting strategy for improving margins AI Journal, 2002 (137) - pages 197-216. |
F. Aiolli, A. Sperduti | An
Efficient SMO-like algorithm for Multiclass SVM Proceedings of the NNSP, 2002. |
F. Aiolli, A. Sperduti | A
simple additive re-weighting scheme for improving margins Proceedings of the IJCAI Conference, Seattle USA 2001. |
Contributions in Books | |
F.Aiolli | Transfer Learning by Kernel Meta-Learning In Guyon I., Dror G., Lemaire V., Taylor G., Sylver D., Unsupervised and Transfer Learning. Challenges in Machine Learning series (vol.7) of Microtome. In Press |
F. Aiolli, A. Sperduti | A Preference Optimization Based Framework for Supervised Learning Problems In Furnkranz J., Hullermeier E., Preference Learning, pag 19-42, Springer, 2010 |
F. Aiolli, A. Ciula | A Case Study on the System for Paleographic Inspections (SPI): Challenges and New Develepments In Masulli F., Micheli A., Sperduti A. Computational Intelligence and Bioengineering, p. 53-66, 2009 |
F. Aiolli, G. Da San Martino, M. Hagenbuchner, A. Sperduti | Self Organizing Maps for Structured Domains: Theory, Models, and Learning of Kernels In Innovation in Neural Information Paradigms and Applications. vol. 247, p. 9-42, 2009 |
Workshops | |
F.Aiolli | A Preliminary Study of a Recommender System for the Million Songs Dataset Challenge Proceedings of the ECAI Workshop on Preference Learning: Problems and Application in AI, Montpellier (FR), 2012 |
F. Aiolli, A. Sperduti | Supervised Learning as Preference Optimization: Recent Applications Proceedings of the ECML/PKDD Workshop on Preference Learning, Antwerp (BE), 2008 |
Master Thesis
In my master thesis I applied Tangent
Distance
based
algorithms to the Paleographic field with very promising results.
Personally,
I implemented SPI (A System for Palegraphic
Inspections), an integrated system that applies innovative
segmentation
and supervised learning techniques to the problem of paleographic
document
retrieval.
Last
modified:
Nov 25, 2016.